Exact Tracking in s in a Magnetic Field

Stephen Brooks

April 24, 2013

1 Previous Result

In a cartesian coordinate system, a particle of charge q and momentum p in a magnetic field \mathbf{B} will follow a curved path according to

$$
\frac{\mathrm{d} \mathbf{u}}{\mathrm{~d} z}=\frac{q}{p} \frac{1}{u_{z}} \mathbf{u} \times \mathbf{B},
$$

where $\mathbf{u}=\mathbf{v} / v=\mathbf{p} / p$ is the unit direction vector of the particle's motion [卭. This formula is an exact expression of the Lorentz force law (without electric field) provided that $u_{z}>0$.

This may be manipulated [[]] to give the exact evolution of $x^{\prime}=u_{x} / u_{z}$ and $y^{\prime}=u_{y} / u_{z}$ with respect to z. At no point has the paraxial approximation $\left|x^{\prime}\right|,\left|y^{\prime}\right| \ll 1$ been used.

2 Curved Coordinate System

Curvature κ in the $z-x$ plane is defined such that positively charged particles experience positive curvature when $B_{y}>0$. By the Lorentz force law, if motion is in the $+z$ direction and field is in the $+y$ direction, force on a positive particle will be in the $-x$ direction. This means the $+x$ direction is aligned with the $+r$ radial direction for $\kappa>0$ (in fact, $r=x+\frac{1}{\kappa}$) when the particle is travelling in the $+z$ direction. Viewed from 'above' $(+y)$, positive curvature corresponds to clockwise motion with $\mathrm{d} \theta / \mathrm{d} s=-\kappa$.

In this treatment, $\kappa(s)$ will be a property of the curved reference coordinate system for the entire accelerator and not of any individual particle. The variable s will agree with arc length on the reference curve of the accelerator and planes of constant s will be perpendicular to the reference curve (up to the axis of curvature). The curvilinear coordinate \tilde{x} replaces x, so that the reference curve satisfies $\tilde{x}=y=0$, with no change needed to y as there is no vertical curvature.

3 Making s the Independent Variable

Without loss of generality, analysis from this point on will assume the curvilinear and cartesian axes are momentarily aligned: \tilde{x} with x and s with z. Considering the forward motion in z given by an increment in s gives $\mathrm{d} z / \mathrm{d} s=1+\kappa \tilde{x}$, which equals zero at the centre of curvature $\tilde{x}=-\frac{1}{\kappa}$ as expected.

The evolution of \mathbf{u} can now be restated in terms of s, remembering that the elements of \mathbf{u} are still relative to the fixed cartesian axes:

$$
\frac{\mathrm{d} \mathbf{u}}{\mathrm{~d} s}=\frac{\mathrm{d} \mathbf{u}}{\mathrm{~d} z} \frac{\mathrm{~d} z}{\mathrm{~d} s}=(1+\kappa \tilde{x}) \frac{q}{p} \frac{1}{u_{z}} \mathbf{u} \times \mathbf{B} .
$$

4 Rotation of Basis

The vector \mathbf{w} is defined to contain the same direction as \mathbf{u} but expressed in the local \tilde{x}, y, s basis rather than the x, y, z one. At the momentary point of axis-alignment, $\mathbf{w}=\mathbf{u}$ but the derivatives differ by a rotation of rate $-\kappa$:

$$
\frac{\mathrm{d} \mathbf{w}}{\mathrm{~d} s}=\frac{\mathrm{d} \mathbf{u}}{\mathrm{~d} s}+\left[\begin{array}{c}
\kappa u_{z} \\
0 \\
-\kappa u_{x}
\end{array}\right]=\frac{\mathrm{d} \mathbf{u}}{\mathrm{~d} s}+\mathbf{u} \times\left(-\kappa \mathbf{e}_{y}\right) .
$$

5 Conclusion (Vector Form)

Combining the previous two results gives

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{w}}{\mathrm{~d} s} & =(1+\kappa \tilde{x}) \frac{q}{p} \frac{1}{u_{z}} \mathbf{u} \times \mathbf{B}+\mathbf{u} \times\left(-\kappa \mathbf{e}_{y}\right) \\
& =\mathbf{u} \times\left((1+\kappa \tilde{x}) \frac{q}{p} \frac{1}{u_{z}} \mathbf{B}-\kappa \mathbf{e}_{y}\right) \\
& =\mathbf{w} \times\left((1+\kappa \tilde{x}) \frac{q}{p} \frac{1}{w_{s}} \mathbf{B}-\kappa \mathbf{e}_{y}\right),
\end{aligned}
$$

where the final line uses the momentary axis alignment. As a cartesian basis can be chosen at each point, the analysis holds for all s. Setting $\kappa=0$ in this formula recovers the result for cartesian coordinates.

5.1 Cyclotron Radius Check

The form of the above equation means that \mathbf{w} is constant if the term in brackets is zero. If a particle is travelling directly along the reference trajectory, $\tilde{x}=0$ and $w_{s}=1$, so \mathbf{w} will be constant (that is, the particle will remain on the reference trajectory) if

$$
\frac{q}{p} \mathbf{B}-\kappa \mathbf{e}_{y}=0 \quad \Rightarrow \quad \mathbf{B}=\frac{p}{q} \kappa \mathbf{e}_{y}=\frac{p}{q R} \mathbf{e}_{y}
$$

where $R=1 / \kappa$ is the radius of curvature. The relation $B=p / q R$ is the well-known formula for the cyclotron radius.

6 Geometrical Variables x^{\prime} and y^{\prime}

In the curvilinear coordinate system there are analogous definitions of $x^{\prime}=w_{\tilde{x}} / w_{s}$ and $y^{\prime}=$ w_{y} / w_{s}. Following previous work [【] , their derivatives are given by

$$
\frac{\mathrm{d} x^{\prime}}{\mathrm{d} s}=\frac{1}{w_{s}}\left(\frac{\mathrm{~d} w_{\tilde{x}}}{\mathrm{~d} s}-x^{\prime} \frac{\mathrm{d} w_{s}}{\mathrm{~d} s}\right) \quad \frac{\mathrm{d} y^{\prime}}{\mathrm{d} s}=\frac{1}{w_{s}}\left(\frac{\mathrm{~d} w_{y}}{\mathrm{~d} s}-y^{\prime} \frac{\mathrm{d} w_{s}}{\mathrm{~d} s}\right) .
$$

Next, $\mathrm{d} \mathbf{w} / \mathrm{d} s$ needs to be expressed in terms of x^{\prime} and y^{\prime} :

$$
\frac{1}{w_{s}} \mathbf{w} \times \mathbf{B}=\left[\begin{array}{c}
y^{\prime} B_{s}-B_{y} \\
B_{\tilde{x}}-x^{\prime} B_{s} \\
x^{\prime} B_{y}-y^{\prime} B_{\tilde{x}}
\end{array}\right] \quad \Rightarrow \quad \frac{\mathrm{d} \mathbf{w}}{\mathrm{~d} s}=(1+\kappa \tilde{x}) \frac{q}{p}\left[\begin{array}{c}
y^{\prime} B_{s}-B_{y} \\
B_{\tilde{x}}-x^{\prime} B_{s} \\
x^{\prime} B_{y}-y^{\prime} B_{\tilde{x}}
\end{array}\right]-\kappa\left[\begin{array}{c}
-w_{s} \\
0 \\
w_{\tilde{x}}
\end{array}\right]
$$

Since $\frac{1}{w_{s}}=\sqrt{1+x^{\prime 2}+y^{\prime 2}}$,

$$
\frac{1}{w_{s}} \frac{\mathrm{~d} \mathbf{w}}{\mathrm{~d} s}=\sqrt{1+x^{\prime 2}+y^{\prime 2}}(1+\kappa \tilde{x}) \frac{q}{p}\left[\begin{array}{c}
y^{\prime} B_{s}-B_{y} \\
B_{\tilde{x}}-x^{\prime} B_{s} \\
x^{\prime} B_{y}-y^{\prime} B_{\tilde{x}}
\end{array}\right]-\kappa\left[\begin{array}{c}
-1 \\
0 \\
x^{\prime}
\end{array}\right]
$$

Finally, combinations of the rows of this vector give

$$
\frac{\mathrm{d}}{\mathrm{~d} s}\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\sqrt{1+x^{\prime 2}+y^{\prime 2}}(1+\kappa \tilde{x}) \frac{q}{p}\left[\begin{array}{c}
y^{\prime} B_{s}-B_{y}-x^{\prime 2} B_{y}+x^{\prime} y^{\prime} B_{\tilde{x}} \\
B_{\tilde{x}}-x^{\prime} B_{s}-x^{\prime} y^{\prime} B_{y}+y^{\prime 2} B_{\tilde{x}}
\end{array}\right]+\kappa\left[\begin{array}{c}
1+x^{\prime 2} \\
x^{\prime} y^{\prime}
\end{array}\right]
$$

The differences with the cartesian formula, apart from relabelling of axes, are the second term and the factor of $1+\kappa \tilde{x}$ in the first term; the cartesian formula is recovered by setting $\kappa=0$.

6.1 New Derivative of x and y

The variables x^{\prime} and y^{\prime} are still the tangents of angles relative to the forward direction, in other words they are not equal to $\mathrm{d} \tilde{x} / \mathrm{d} s$ and $\mathrm{d} y / \mathrm{d} s$ but rather $\mathrm{d} \tilde{x} / \mathrm{d} z$ and $\mathrm{d} y / \mathrm{d} z$, recalling that the z axis is momentarily aligned with s but represents a distance. Thus the equations for updating x and y are now

$$
\frac{\mathrm{d}}{\mathrm{~d} s}\left[\begin{array}{l}
\tilde{x} \\
y
\end{array}\right]=\frac{\mathrm{d} z}{\mathrm{~d} s} \frac{\mathrm{~d}}{\mathrm{~d} z}\left[\begin{array}{l}
\tilde{x} \\
y
\end{array}\right]=(1+\kappa \tilde{x})\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] .
$$

References

[1] Exact Tracking in z in a Magnetic Field, S.J. Brooks, available from http:// stephenbrooks.org/ral/report/2012-2/magnetztracking.pdf (2012).

