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FFAGs with vertical orbit excursion (VFFAGs) provide a promising alternative design for rings
with fixed-field superconducting magnets. They have a vertical magnetic field component that
increases with height in the vertical aperture, yielding a skew quadrupole focussing structure. Scaling
type VFFAGs are found with fixed tunes and no intrinsic limitation on momentum range. This
paper presents the first multi-particle tracking of such machines. Proton driver rings to accelerate
the 800MeV beam from the ISIS synchrotron are presented, in terms of both magnet field geometry
and longitudinal behaviour during acceleration with space charge. The 12GeV ring produces an
output power of at least 2.18MW. Possible applications of VFFAGs to waste transmutation, hadron
therapy and energy-recovery electron accelerators are also discussed.

I. VFFAG PRINCIPLE

If the closed orbit of a ring accelerator lies in a horizon-
tal plane (constant y), the magnetic field along it must
satisfy

∮
By ds = 2πp/q in order for the orbit to close.

This can be satisfied by many magnetic fields, some of
which permit vertical orbit excursion. If By increases
with y, the closed orbit will move in the +y direction
(upwards) as p increases, so that

∮
By ds remains pro-

portional to beam momentum.
It is a misconception to think that ‘centrifugal force’

always moves the orbit outwards as momentum increases
in a fixed field machine. In fact the beam adiabatically
tracks the closed orbit provided that it has locally stable
optics. In the vertical excursion case, any initial outward
movement from centrifugal force moves particles horizon-
tally into regions where the vertical field gradient implies
(via ∇·B = 0) that there is a Bx component, which then
pushes the particles upwards as required.
Fig. 1 shows an example of the motion of a beam in

such an accelerator with increasing energy, where rela-
tivistic shrinkage of the beam is also visible.

A. Linear Optics of Scaling VFFAGs

This paper concentrates on what could be termed
the scaling vertical-orbit-excursion field by analogy with
(horizontal) scaling FFAGs. The magnetic fields in scal-
ing machines are derived from a symmetry principle. If
a closed orbit is scaled by a factor a in size (and possibly
translated or rotated) while magnetic fields on that orbit
are scaled by b, then the beam momentum p ∝ Bℓ must
scale by ab. Scaling FFAGs use a group of transforma-
tions that scale about the ring centre with b = ak [1] for
some field index k. Scaling VFFAGs as defined here use
a group of translations for which a = 1 but b = ek∆y for
vertical orbit offset ∆y. k must be constant for the entire
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FIG. 1. Vertical movement of a proton beam accelerated in a
scaling VFFAG with k = 5m−1 [2].

ring to satisfy the scaling law

y 7→ y +∆y, (p,B) 7→ (p,B)ek∆y,

which ensures the geometry of all particle trajectories,
including those off the closed orbit, are preserved during
acceleration: translating upwards as p is increased.

Thus, the field within the body of a scaling VFFAG
magnet is given by By = B0e

ky on the x = 0 mid-plane.
The beam travels in the local +z direction through each
magnet and shifts to height y = 1

k ln p/pinj as momen-
tum p increases. The injection orbit is defined to be at
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y = 0 and the current windings lie on the ±x sides of a
vertical gap (see Figs. 3 and 5). At injection, the mag-
net body has bending field B0 and skew gradient B0k
(as well as higher multipoles of strength proportional to
B0k

n≥2), so without edge effects B0 must alternate in
sign to provide alternating gradient focussing. Optics of
a ring with such magnets without edge effects are consid-
ered in [2], including scans of the lattice stability regions
to find which have good dynamic aperture in spite of the
nonlinear fields.

FIG. 2. Skew quadrupole magnetic field (purple lines) and
direction of forces (arrows) exerted on the beam, which in
a skew FODO channel oscillates in shape between the two
ellipses shown. The new skew axes u, v are labelled.

As in scaling FFAGs, this magnetic field is combined
function, with a dipole and gradient (and all higher multi-
poles) superimposed. For small distances from the origin,
the field is to first order

By = B0 +B0ky + · · ·
Bx = −B0kx+ · · · ,

which produces skew focussing optics as shown in Fig. 2.
Is it useful to define skew transverse axes

u = (x+ y)/
√
2 v = (y − x)/

√
2,

which are rotated by 45◦ . Using these, the usual expres-
sion for a quadrupole field reappears:

Bu = (Bx +By)/
√
2 = B0/

√
2 +B0k(y − x)/

√
2

= B0/
√
2 +B0kv

Bv = (By −Bx)/
√
2 = B0/

√
2 +B0k(x+ y)/

√
2

= B0/
√
2 +B0ku.

Another important feature shared with scaling FFAGs
is that optics are identical at each momentum, so tunes
stay constant, which is important for proton machines
with many turns or significant space charge.

B. Combination with Existing FFAG Types

For most horizontal orbit excursion FFAGs, there is
a VFFAG with the same focussing structure, similar or-
bit separation and field gradients, except the separation
becomes vertical and the gradients skew. The VFFAG
may also be combined with fixed or variable frequency
RF acceleration schemes.

In scaling VFFAGs, field gradient is proportional to
the bending field, which has the unfortunate consequence
of requiring reverse bends in all alternating gradient lat-
tices. Having negative B0 for some magnets in this way
increases machine circumference for a given field by ∼5
times, similar to the circumference factor [3] in horizontal
scaling FFAGs. The parameter space for scaling FODO
and triplet VFFAG lattices is plotted in [2], showing most
of the stable region stays close to the F=D line where
net bending is zero. This can be mitigated somewhat
by using edge angles on the magnets for the alternating
focussing and the interior field for bending, permitting
a single magnet per lattice cell. This technique is the
equivalent of the ‘spiral sector’ scaling FFAG and is used
in the proton driver machine presented in sections III and
IV; it is also commonly used in cyclotrons.

Non-scaling VFFAGs are also possible but as with hor-
izontal non-scaling FFAGs, tunes may no longer be fixed
and momentum range may be limited. Additionally, the
closed orbits will not necessarily stack vertically on top of
each other due to the different horizontal bending experi-
enced by different momenta in each magnet, meaning the
orbit excursion could sweep out a generalised curved sur-
face. Linear-field non-scaling VFFAGs, suggested by [4],
can be constructed using only offset skew quadrupoles,
though their beam dynamics is at present completely un-
explored.

Adding a synchrotron-like RF system to a VFFAG
permits acceleration of bunches of any energy, with the
RF frequency tracking the ring revolution frequency, pro-
vided the RF has the appropriate aperture slot for the
beam orbit excursion. Fixed-frequency RF can also be
considered for relativistic beams, since the VFFAG closed
orbit circumference does not change very much with en-
ergy and is constant in scaling VFFAGs, making the
ring nearly isochronous as v → c. This could enable
cyclotron-like CW operation for some machines.

C. Historical Papers

The earliest mention of the VFFAG principle the au-
thor is aware of is Ohkawa [5] in 1955, who suggested a
scaling VFFAG for electrons with fixed-frequency RF,
calling it an FFAG cyclotron with fixed orbit length.
Leleux et al. [6] in 1959 again found the exponential field
configuration and analysed its linear dynamics and stabil-
ity in their report. They call it a ‘helicoidal FFAG’ after
the helical progression of the orbit upwards in the ring
as it is accelerated. Teichmann [7] in 1962 had continued
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developing Ohkawa’s idea in order to achieve ‘complete
isochronism’, that is a fixed-tune isochronous FFAG and
presents an interesting figure showing that a deviation
from exact vertical orbit excursion can make the orbits of
even sub-relativistic particles exactly isochronous. This
will be revisited briefly in section VB.
The author developed most of these ideas indepen-

dently starting in 2009, discovering this literature later
with the help of colleagues. New developments in the
intervening half century include the widespread use of
computerised multi-particle tracking and superconduct-
ing magnets in accelerators, both of which will be dis-
cussed in this paper.

II. MAGNETIC FIELD MODELS

If conductors rather than iron dominate, as is the case
for high-field superconducting or bare coil magnets, pro-
ducing a vertical magnetic field in a vertical slot aper-
ture can be easier than in the horizontal slot required
by conventional FFAGs. Fig. 3(a) shows that conduc-
tors parallel to the beam direction placed symmetrically
above and below a horizontal slot must actually cancel
each other at their midpoint in order to produce a pure
By field on the mid-plane. The field is produced some
distance to the side of the coils; normal conducting syn-
chrotron dipoles resemble split solenoids on their side for
this reason, with the coil at the periphery of the beam
region (and field enhanced by iron).
Reversing the current in one of the conductors so that

the fields are additive on the mid-plane produces more
field closer to the sources but now the field is horizontal.
This problem can be turned into an advantage by rotat-
ing the whole magnet so that both the field and aper-
ture slot are vertical: this is the VFFAG situation. It is
favourable for conductor-dominated magnets because the
field is produced from conductors closer to the beam po-
sition and unfavourable for iron-dominated magnets that
would make the field perpendicular rather than parallel
to the slot sides.

A. Analytic Exponential Model (2D)

For the field in a long magnet with no variation in z,
Maxwell’s equations in free space reduce to

∂xBx + ∂yBy = 0, ∂xBy − ∂yBx = 0

and Bz constant, assumed here to be zero. The solution
to these equations that gives the scaling VFFAG field
By = B0e

ky and Bx = 0 on the mid-plane x = 0 is

By = B0e
ky cos kx, Bx = −B0e

ky sin kx.

This field is plotted in Fig. 4: its strength increases ex-
ponentially with y everywhere, satisfying the scaling law
and the field vector rotates with x off the mid-plane.

FIG. 3. Pairs of conductors with currents perpendicular to the
page that create: (a) a vertical field in a horizontal aperture;
(b) a horizontal field in a horizontal aperture; (c) a vertical
field in a vertical aperture.

FIG. 4. Transverse field lines of the scaling VFFAG field in a
long magnet derived analytically from the complex exponen-
tial function.

The 2D free space Maxwell equations are exactly the
conditions for the complex function f(x+iy) = By+iBx

to be holomorphic. In this case the solution corresponds
to f(z) = B0e

−ikz, the complex exponential explaining
the appearance of sin and cos in the off-plane field.
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B. Block Conductors Model (2D)

To see if the exponential field could be produced by
a practical arrangement of superconductors, a 2D model
made of rectangular block coils carrying 250A/mm2 was
optimised to produce the k = 5m−1 field from 0.5–4.41T
used in [2]. Fig. 5 shows the result, with the coils on
the +x side having opposite polarity to those on the −x
side. The exponential field was produced well with small
(< 1%) field errors, though in a real magnet the design
would be optimised more finely. Because the machine
in question had a large energy range of 0.8–12GeV, the
design took advantage of the relativistic beam shrinkage
by bringing the coils for the highest energies closer to the
mid-plane.

FIG. 5. 2D scaling VFFAG magnet design using block coils.
Left: field lines and coils. Centre: field strength and proton
beam sizes at 0.8 and 12GeV. Right: field errors and the size
of the superconducting windings in the PAMELA [8] scaling
FFAG, to scale.

It is interesting to note that for smaller beams, the
magnetised volume could be made very small by narrow-
ing the gap between the conductors into a thin layer.
As the conductors have opposite polarity, forces on the
coils are away from the mid-plane, so an external support
structure in compression should keep them in place.

C. Series Solution with End Fields (3D)

A three-dimensional field model must also include the
ends of the magnet. Maxwell’s equations for free space
will extrapolate the field for the interior of the magnet
once it is specified on a plane: here the x = 0 mid-plane is
chosen. To represent magnets with edge angles, as found
in spiral scaling VFFAGs, the parameter τ = tan θedge
is introduced, along with a coordinate ζ = z − τy so
that the magnet corresponds to the region 0 ≤ ζ ≤ Lmag

for all y. Field fall-off is determined by a function f(ζ)

that approaches 1 in the magnet body and 0 outside.
Naively one wants a mid-plane field By = B0e

kyf(ζ) but
to obey Maxwell’s equation (∇ × B)x = 0, this has to
be modified to (By, Bz) = B0e

ky
(
f(ζ)− τ

kf
′(ζ), 1

kf
′(ζ)

)
.

The note [9] derives this formula and the Taylor series
extrapolation used to calculate fields for x ̸= 0. For edge
angles, z 7→ z + τ∆y is added to the VFFAG scaling law
to keep ζ constant (more accurately, this is a rotation of
τ∆y/R about the ring centre).

FIG. 6. Cross-section of the 0.8–5GeV proton driver ring
magnet’s field in ZY (top) and ZX (bottom) planes. It has
k = 2.01m−1, τ = 2.23 and B0 = 0.5T.

An example of the resulting field is plotted in Fig. 6.
The fringe field at the entrance to the magnet has oppo-
site sign to that at the exit, providing alternating gra-
dient focussing without changing the sign of B0. Note
that symmetry about the YZ plane forbids conventional
quadrupole fields, meaning all focussing is skew apart
from the Bz component with focussing like a solenoid.

1. Winding Configuration

As with the 2D magnet, the conductors will be par-
allel to the beam (z axis) in the body of the magnet,
running in opposite directions each side of the x = 0
mid-plane but the circuits must close somehow at the
ends. This should be achieved in practice by the conduc-
tors running to the top of the magnet along the ζ = 0
and ζ = L lines and then looping over to the other side of
the mid-plane. In fact, the accumulation of conductors
running up the ends of the magnet is what produces the
end fields, since Maxwell’s equations implicitly require
closed circuits with ∇ · J = 0. A detailed 3D model of
the winding configuration is a topic for further study.

2. Field Enhancement Factor

As can be seen in Fig. 6, the largest fields are present in
the magnet edges and off-plane. The field enhancement
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factor

Fenh =
maxz |B(x, y, z)|

B0eky
=

Bfringe

Bbody

is plotted in Fig. 7 (at y = 0, though by the scaling law
it is the same at all y).

FIG. 7. Field enhancements as a function of τ , fringe length
(f) and distance from mid-plane (x) from 0 to 4 cm, in the 3
or 5GeV magnet design with k = 2.05m−1.

Enhancement increases with τ but is ameliorated by in-
creasing fringe length; it also increases extremely rapidly
with x for small fringe lengths. However, it decreases
with increasing k because higher k magnets actually have
weaker fringe fields.
In ring design, this number fills a similar role to the

circumference factor of scaling FFAGs: it is the amount
a theoretical constant bending field must be multiplied
by to find the real maximum field strength in a ring of
fixed size and magnet filling factor.

3. Circumference Factor Comparison

Symon [3] defined ‘circumference factor’ to be the
length of the top-energy closed orbit divided by the
circumference of a circle with the maximum curvature
found anywhere on the orbit, which is equivalent to
C = |B|max/ ⟨By⟩ where ⟨·⟩ denotes average around the
orbit. For spiral scaling VFFAGs with a singlet lattice,
C = Fenh/P where P is the magnet packing factor. For
the proton driver lattices considered in the next section,
Fenh = 2.6–2.7 and P−1 = 4.3–5.3, giving C = 11.2–14.4
but note that for a synchrotron, C = P−1, which will
also be much greater than 1. The original MURA note
considered FFAGs entirely filled with magnets (P = 1)
when it quoted values of C = 5–6 for scaling FFAGs,
so a better metric for comparing realistic rings may be
CP . This is just equal to Fenh for the spiral VFFAGs
and is somewhat lower than the values for sector scaling

FFAGs with reverse bends, even though By goes tem-
porarily negative in the spiral VFFAG magnet’s exit end
field.

III. PROTON DRIVER TRANSVERSE
DYNAMICS

Parameters were sought for fixed-field rings to boost
the energy of the two ISIS [10] proton bunches from
800MeV, following the outline RF approach in [11].
Lattice cells containing a single VFFAG magnet and a
reasonably-long drift space, with enough dynamic aper-
ture for the 150mm.mrad geometric emittance proton
beam are given in Table I.

TABLE I. Transverse Parameters for VFFAG Rings

Ek,inj 800MeV
Ek,ext 3GeV 5GeV 12GeV
Mean radius 52m (2×ISIS)
Superperiods 80 (superperiod is one cell)
Cell length 4.0841m
Drift length 3.3174m 3.1257m

Magnet Parameters
Magnet length 0.7667m 0.9584m
B0 0.5T 0.4T
k 2.01m−1 2.2m−1

τ = tan θedge 2.23 2.535
θedge 65.84◦ 68.47◦

Fringe length f = 0.3m in B ∝ 1
2
+ 1

2
tanh(z/f)

Bext 1.3069T 2.0036T 3.5274T
Bfringe/Bbody 2.6941x=4 cm 2.6174x=2 cm

Bmax 3.5210T 5.3979T 9.2326T
Beam Optics

yext − yinj 0.4780m 0.6906m 0.9895m
µu (per cell) 71.17◦ 71.63◦

µv 28.60◦ 19.95◦

Qu (ring) 15.815 15.917
Qv 6.357 4.433

Matched Injection at Drift Midpoint
βu 3.445m 3.506m
αu 0.426 0.481
βv 7.145m 10.284m
αv -0.597 -0.960

The beam power will increase in proportion to energy,
so options are provided for neutron production at 3GeV,
high-power exotics production at 12GeV and a ‘com-
promise’ energy of 5GeV, which provides more power
for neutrons but perhaps less efficiency. With the mean
current 208µA presently achievable in ISIS, these would
have beam powers of 0.6, 2.5 and 1.0MW respectively at
50Hz.

The 12GeV ring, the most aggressive design, with
applications to neutrino factories and muon colliders,
needed a slightly longer magnet to lower the peak field,
which in turn required larger edge angles. The field en-
hancement was evaluated at x = 2 cm and not 4 cm to
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account for adiabatic shrinkage of the beam once accel-
erated to 12GeV.

FIG. 8. Perspective view of the 12GeV ring.

FIG. 9. Beta functions in the two lattices, in non-skew and
skew coordinates. Magnet size is to scale in z and y.

In terms of skew coordinates u and v, the lattice beta
functions shown in Fig. 9 are overall doublet-like but
with some features in the end fields. The x and y optics
are highly coupled so do not behave like normal beta
functions. The cell and machine tunes in Table I are
also given in terms of skew axes, although since the weak

focussing in x from the machine curvature couples even
these, the values are eigen-tunes that have been labelled
as primarily u or v. Fig. 10 shows how the phase spaces
vary through the magnet, with some distortion of the
matched shape, particularly in the (v, v′) plane due to
nonlinearity in the magnetic field.

FIG. 10. Phase space and beam evolution through the 12GeV
ring cell at injection energy. Transverse scale is ±5 cm and
x′, y′, u′, v′ ranges are ±20mrad.

The scaling law gives VFFAGs interesting properties,
such as constant dispersions Dx = 0 and Dy = 1

k and a
constant orbit length that makes γtr = ∞.

FIG. 11. Tracking through ∼12 turns of the 12GeV ring
with matched beams (no space charge). Optics stable apart
from signs of a 5th order resonance in the (u, u′) plane, since
µu ≃ 72◦

A. Dynamic Aperture Parameter Scan

The ring designs were found as combinations of six
parameters (B0, k, τ, f, Lmag, Ldrift), the last two being
dictated by the integer RF harmonic number (ring cir-
cumference) and superperiodicity (cell length) together
with B0, which gives the magnet fill factor. The main fo-
cussing parameters k and τ were scanned over, producing
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plots like Fig. 12. For each square, 250 protons from a
150mm.mrad waterbag beam were tracked for 250 cells
and removed if r > 10 cm. Squares are coloured accord-
ing to the percentage that survive, showing areas of good
dynamic aperture.

FIG. 12. Proton beam transmission as a function of τ and
k, with the 3 or 5GeV ring design circled. Lines of increased
loss correspond to cell tune resonances (labelled).

B. Transverse Intensity Issues

Since the ring tune is 80 times the cell tune, a fine-
tuning stage is needed to steer the fractional parts of the
ring tunes away from resonances. For the 3 or 5GeV
ring,

∂Qu,v

∂k
=

[
−8.49
−94.46

]
and

∂Qu,v

∂τ
=

[
39.92
119.82

]
,

which are linearly independent enough to find any desired
fractional ring tunes without major deterioration of the
optics. This fine-tuning will also have to be done on the
real machine, using trim coils producing fields propor-
tional to ∂B/∂k and ∂B/∂τ .

The rapid variation ofQv arises because the cell tune in
v is quite close to zero. This is problematic since Qv also
varies rapidly in response to space charge forces, making
the tune depressions of these rings roughly ∆Qsc,u =
−0.2 and ∆Qsc,v = −0.4 at injection. This could be
improved by finding rings with more balanced tunes or
larger mean beta functions, though maybe at the expense
of shorter drift spaces or a larger circumference.

IV. PROTON DRIVER LONGITUDINAL
DYNAMICS

The line charge density ρ1D along the beam deter-
mines the level of transverse as well as longitudinal space
charge, so it is important to do realistic simulations of the
longitudinal bunch shape including space charge. The
simulation code written for this uses three transforma-
tions on the particle (∆t,∆E) coordinates: a drift, an
RF kick and a space charge kick; doing these once per
turn provides sufficient accuracy. The drift affects ∆t
depending on the ring circumference function C(Ek, t).
For a synchrotron, the absolute time t determines the ma-
chine magnet reference momentum p0, then the particle’s
Ek gives its ∆p/p, so to first order C = C0(1 + α0∆p/p)
where α0 is the momentum compaction (0.0392 for ISIS).
Fixed field magnets have no t dependence and for a
VFFAG the circumference does not change with closed
orbit momentum either, so C is constant. The RF and
space charge kicks affect ∆E only, so when done sepa-
rately from the drift, phase space area is preserved.

RF voltages applied to a proton per turn are defined
as −V0 sin(ϕ0+2πf∆t), with V0(t), ϕ0(t) specified by the
user. Space charge is calculated using the derivative of
the line density, which is Gaussian-smoothed to reduce

statistical noise. Provided d2ρ1D

dz2 is small, the voltage per
turn from space charge is

Vsc = −C ⟨Ez,sc⟩ =
C

4πϵ0

g

γ2

dρ1D
dz

,

where g is a shielding factor from the shape of the beam
and the conducting beam pipe [12]. ISIS has g = 1.546
in a mostly round beam pipe, while the VFFAG has g =
1.914 for a skew Gaussian beam between two vertical
conducting plates at x = ±4 cm, calculated using the
method in [13].

FIG. 13. ISIS first harmonic RF program.

To obtain an input distribution for the VFFAG (and as
a check), 1D simulations were first run on ISIS starting
from the linac injection at 70.44MeV. The voltage and
phase functions [14] for this are shown in Fig. 13 and
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the results in Fig. 14 agree with the current models and
observed transmission values of the machine in this mode.

FIG. 14. Bunching factor, transmission and intensity-
dependent effects in the ISIS first harmonic simulation.

A. Longitudinal Intensity Effects

Fig. 14 shows a number of parameters that could limit
machine intensity. The bunching factor is defined as B =

⟨ρ1D⟩ /ρpeak1D with smaller values being worse for space
charge. The ‘space charge ratio’ is defined as an average
of Vsc/Vrf over the beam, roughly equivalent to ∆Qs/Qs

in terms of the synchrotron tune. It has been shown using
the Boussard criterion [15] that this must be greater than
−0.4 to avoid microwave instabilities. To avoid dividing
by zero when Vrf = 0, the ratio is actually calculated as
the weighted average

∑
VscVrf/

∑
V 2
rf .

Transverse tune shifts are calculated using the Laslett
tune shift formula without boundary terms:

∆Qx,y = − q2

4πϵ0mc2
N

2πBβγ2ϵn,rms
x,y

σ̄x,y

σ̄x + σ̄y
,

where the last term only requires the average beam as-
pect ratio σ̄x/σ̄y, which is 1 for ISIS and σ̄u/σ̄v = 0.554
for the 12GeV VFFAG. There is a slight inconsistency
with the transverse simulations that used a waterbag
with ϵrms,800MeV

x,y = 25mm.mrad whereas the 1D simu-
lations assumed the value 30mm.mrad observed in the
machine.

B. VFFAG RF System

The VFFAG transfers the two bunches from ISIS into
the 1st and 3rd buckets of a frequency-doubled RF system
given in Table II. Because of this doubling, the bunch
initially fills much of the RF bucket, meaning only low
acceleration phases are possible early in the cycle (Fig.
15). Later on, the bunch shrinks in time spread and

FIG. 15. RF acceleration program for the 12GeV VFFAG.

increases in energy spread (Figs. 17,18), allowing faster
acceleration.

TABLE II. Longitudinal parameters for the 12GeV VFFAG.
Peak voltage per turn and phase are linearly interpolated from
the times given.

RF harmonic h = 8
RF frequency 6.179–7.321MHz
Cycle duration 18.41ms
Rep. rate 50Hz
Time (ms) Voltage (kV) Phase
0 150 10◦

1 250 20◦

2 350 25◦

2.5 525 30◦

3 800 35◦

4 1000 40◦

10 1000 55◦

18.41 (extract) 1000 59.21◦

20 1000 60◦

In theory the bunch could be adiabatically compressed
via an increase in RF voltage early in the cycle, followed
by high-phase acceleration. However, as Fig. 16 shows,
at low energies of 0.8–1.1GeV (the first 3ms) the tune
shift in the v plane is high and would exceed the half in-
teger limit if full bunch compression was attempted near
injection energy, hence the period of low-phase accelera-
tion.

Table III shows the result of increasing the ISIS linac
pulse length by 10 or 20%. Worst-case intensity parame-
ters are shown, which are reasonable for the VFFAG even
with 14% more current, although in reality ISIS would
use a more efficient RF program or its 2nd harmonic sys-
tem.
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FIG. 16. Bunching factor and intensity-dependent effects in
the 12GeV VFFAG simulation.

TABLE III. Intensity-dependent parameters for the ISIS sin-
gle harmonic and 12GeV VFFAG simulations run in series,
for different numbers of protons injected into ISIS.

ISIS Protons In 2.50e13 2.75e13 3.00e13
ISIS µA in 200.3 220.3 240.3
ISIS transmission 90.54% 87.95% 85.98%
ISIS protons out 2.26e13 2.42e13 2.58e13
ISIS µA out 181.3 193.7 206.6
ISIS power (kW) 145 155 165
VFFAG transmission 100%
VFFAG power (MW) 2.18 2.32 2.48

ISIS Peak Intensities
Bunching factor 0.154 0.150 0.151
Space charge ratio -0.301 -0.305 -0.311
∆Qx,y -0.499 -0.544 -0.580

VFFAG Peak Intensities
Bunching factor 0.0188 0.0190 0.0190
Space charge ratio -0.211 -0.257 -0.278
∆Qu -0.219 -0.240 -0.254
∆Qv -0.395 -0.434 -0.458

C. Suitability for Muon Production

Note that in Fig. 17, the output RMS bunch length
is small enough to be used for a neutrino factory proton
driver [16]. Some of the 1.59ms spare time for RF reset
at the end of the cycle could be used to produce an energy
flat top so the two bunches can be extracted with a delay
between.

V. FUTURE DEVELOPMENT AND
APPLICATIONS

VFFAGs are promising candidates for a number of
current accelerator needs, this section explores why and
what further work there is to be done.

FIG. 17. Bunch duration in the 12GeV VFFAG simulation,
reducing to a final value of ∆trms = 1.64 ns.

FIG. 18. Increase of bunch energy spread in the 12GeV
VFFAG simulation to ±41.1MeV.

A. Improving the Proton Driver Design

The proton driver rings presented in this paper show
that in principle a VFFAG can have the right parame-
ters for an ISIS upgrade. However, the lattice needs to be
improved to make the machine more practical: although
there is enough horizontal drift space for the proposed
RF at 25% packing factor [11], the diagonal shape be-
tween the magnets is difficult to fit a slotted RF cavity
into that spans the whole energy range. The remedy be-
ing considered is to make a racetrack-style ring out of
two different lattices: an edge-focussed lattice, like the
current one but with shorter drifts, designed for maxi-
mum bending; and an insertion designed for long drifts
but with no bending or edge angles. The insertion could
contain RF, collimators, injection and extraction equip-
ment. This design approach has been successfully applied
by Mori [17] for scaling FFAGs. Provided the k of the
two VFFAG sections is the same, there is no disagree-
ment in closed orbit between them and the matching will
be mostly concerned with reducing β ripple.



10

B. Isochronous VFFAGs for High Average Power

Introducing some horizontal orbit excursion into a
VFFAG varies the orbit circumference and allows it to
be exactly proportional to beam velocity, making the ma-
chine isochronous. This is easier than in a horizontal or-
bit excursion FFAG (or a cyclotron) because the conver-
gence towards v/c = 1 does not cause the orbits to ‘pile
up’ at the maximum radius, producing large gradients
and overfocussing. Instead, the vertical orbit motion can
control the field gradient and even keep the normalised
focussing strength constant.
The orbit excursion follows the path of increasing up-

ward dipole field (where By > 0 but Bx = 0). When
this path is at an angle θ to the horizontal in the (x, y)
plane, the quadrupole focussing associated with its gradi-
ent is at an angle θ/2 to a normal quadrupole. Horizontal
FFAGs correspond to θ = 0 and pure VFFAGs to θ = 90◦

with the quadrupole then rotated by θ/2 = 45◦. For an
isochronous VFFAG that is not ultra-relavistic, these an-
gles will vary as the beam accelerates, tending towards
θ = 90◦ as v → c.
Isochronous machines may use a fixed frequency RF

system, which generally has a higher gradient than
variable-frequency RF. If the orbit turns are also sep-
arated at injection and extraction, the VFFAG can oper-
ate in CW mode like a cyclotron. Isochronous VFFAGs
could potentially have the same beam current as a cy-
clotron but a much higher (relativistic) extraction energy,
yielding an average beam power of many megawatts.
Such machines may be of interest for nuclear waste trans-
mutation.

1. Complete Isochronism in Strong Focussing Rings

For rings dominated by strong focussing (i.e. large
rings very unlike a cyclotron), it is possible to find an
orbit excursion that is isochronous and fixed tune ana-
lytically. As the VFFAG is also fixed-field, this satisfies
all of Teichmann’s ‘complete isochronism’ conditions [7].
For isochronism, the mean orbit radius must be r = βR

for some R and for the orbit to close, ⟨By⟩ = p/qr =
mβγc/(qβR) = γB0 where B0 = mc/qR. This is fa-
miliar as the field relation for an isochronous cyclotron.
Assume By varies in sectors around the machine but al-
ways retains the scaling with γ. The normalised focussing
of a magnet is B′l/p where l = rΘ is the sector magnet
length at momentum p and B′ is the magnitude of the
quadrupole gradient, regardless of quadrupole orienta-
tion.

B′l

p
=

B′rΘ

mβγc
=

B′βRΘ

mβγc
=

B′

γ

RΘ

mc
∝ B′

γ
,

so B′ must be proportional to γ to keep normalised fo-
cussing (and hence machine tunes) constant. However,
this means dBy/ds ∝ γ ∝ By, where s is path length in

(x, y) along the orbit excursion curve. Thus By = B0e
s/S

for an appropriate choice of origin for s and S = 1/k is
the scaling length. In other words, the dipole field must
increase exponentially along the orbit excursion curve to
retain scaling optics.

The actual shape of the orbit excursion is found via
the relation between β and γ:

r = βR = r
√

1− γ−2 = R
√
1− e−2s/S

relates arc length to r. It also provides a lower bound
to the energy used in such a machine because after some
manipulation,

dr

ds
=

R

S

1

βγ2

but dr/ds ≤ 1 because s is path length, therefore

βγ2 ≥ R

S

in a strong-focussing-dominated, isochronous VFFAG
with scaling optics. The equality βγ2 = R/S occurs at
the minimum energy when the orbit excursion is horizon-
tal. S dictates the separation of the orbits, so reducing
S allows the acceleration to start from lower energies but
increases the size of the magnets in the machine.

It should be noted that in smaller machines, the weak
focussing in x from the rotation around the ring is sig-
nificant and in fact dominant in many cyclotrons. Cy-
clotrons clearly work to much lower energies, so an anal-
ysis including weak focussing may keep the eigen-tunes
constant to lower energies if the ring tunes are low.

2. Electron VFFAGs and eRHIC

The lower bound on energy for a scaling isochronous
VFFAG gets easier to satsify the lower the mass of the
particle being accelerated. For electron machines in the
GeV scale, the difference from the speed of light becomes
negligible and a scaling VFFAG with a purely vertical
orbit excursion can be used.

Some recent ongoing work [18] has investigated the
use of such a VFFAG for the proposed eRHIC project
where an electron beam is recirculated through a fixed-
frequency linac several times in the RHIC tunnel and
then decelerated in the same machine, out of phase, for
energy recovery. The energy range in one example was
1.2–10GeV over 8 linac passes. k = 100m−1 was used,
meaning the turns fitted within an orbit excursion of
21.2mm. Here a single VFFAG transfer line replaced
either a cascade of two non-scaling FFAGs, or several
stacked ring transfer lines, due to its acceptance of a high
momentum range with stable optics in a small aperture.

C. Hadron Therapy

Finally, VFFAGs may be of interest for medical proton
and ion therapy machines. The PAMELA [19] study has
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investigated conventional FFAGs for these applications
because of their advantages of compactness and rapid cy-
cling over synchrotrons. Compactness comes from their
use of superconducting bending magnets and allows the
machine to fit more easily in a hospital, while rapid cy-
cling comes from not having to ramp the magnets and
allows radiation doses to be applied with a finer resolu-

tion within the patient.
Since the beam in these applications is transversely

small, the VFFAG style magnet (see section II B) may
reduce the magnet volume down to a narrow slot, further
reducing the amount of material and power used in the
machine, while still preserving the other advantages of
FFAGs listed above.
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