

Configurable Field Magnets for a Proton Beam Dynamics R&D Ring

S.J. Brooks {stephen.brooks@stfc.ac.uk}, RAL, Chilton, OX11 0QX, UK

Abstract

Magnets with many independently-powered coils can provide nearly arbitrary combinations of multipoles up to a certain order. This paper gives examples of field quality in such an "omni-magnet", which is normal-conducting and simulated with Poisson. Since the magnets also have quite large apertures they may be used to make a general-purpose FFAG and synchrotron test ring for beam dynamics studies. This could use the 3MeV H⁻ beam from the RAL proton Front End Test Stand (FETS) and outline ring parameters are given for that situation.

Extending FETS with a Ring

- Electron models are not sufficient for simulating the beam dynamics of H⁻ stripping injection, must use an ion species.
- The Front End Test Stand (FETS) at RAL is a source of H⁻ ions at 3MeV, ~50mA current and 50Hz repetition rate.
- FETS already provides a high-quality beam with significant space charge and a fast/slow beam chopper integral to the design.
- Using configurable magnets would allow many synchrotron and FFAG lattices to be tested without having to build a model for each.

Table 1: Parameters of the Proton Omni-Ring

Beam energy	3	MeV
Beam momentum	75.09	MeV/c
Magnet packing factor	40	%
Mean dipole in magnet	0.2	T
Ring diameter	6.262	m
Revolution frequency	1.216	MHz

Example cell structure				
Magnets per ring	24			
Cell length	0.8197	m		
Magnet length	0.3279	m		
Drift length	0.4918	m		

• Injection line from FETS should ideally contain multi-axis kickers (and maybe an RF cavity) for injection painting, beam position and profile monitors, beam diluters to vary space charge and toroids.

• Fast extraction line from ring should contain diagnostics of the beam profile, halo and possibly emittance of any single turn.

Omni-Magnet

n	Pole	$\begin{array}{c} \mathbf{Max} \ j \\ \mathbf{A}/\mathbf{mm}^2 \end{array}$	Strength T/m^{n-1}	Max B in poles Tesla
1	Dipole	5	0.241558	1.23
2	Quad	2.165	2.21262	1.13
3	Sext	1.667	39.36	1.37
4	Oct	1.083	1032	1.20
5	Deca	1	34800	1.30
\overline{n}	Skew	Max j	Strength	Max B in poles
1	Dipole	5	0.241558	1.23
2	Quad	2.5	2.21136	1.29
3	Sext	1.667	39.38	1.37
4	Oct	1.25	1032	1.38
	Deca	1	34800	1.30
5				

Above left: Cross-section of the omni-magnet. The magnet resembles a dodecapole but the current in each coil can be varied independently. The bore radius is 10cm, surrounded by 13cm-long poles and a 4cm-thick iron return yoke for a total radius of 27cm. The poles take up 25% of the angular fraction.

Multipole Fields

Above: (top) Fields generated by the omni-magnet in multipole (left) and skew multipole (right) current configurations. The current density in each winding is given by $j = (5A/mm^2)\sin(n\theta)/n$, with sin replaced by cos for skew poles.

(bottom) Relative errors, defined by $|\mathbf{B} - \mathbf{B}_{goal}|/|\mathbf{B}_{goal}|$, of the corresponding fields in the top row. Each plot shows x,y from -10 to 10cm, including the entire magnet bore. The same colour scale is used throughout this poster.

Scaling FFAG Fields

Left: Omni-magnet producing a scaling FFAG field by linearly combining multipole current configurations according to the Taylor series of the scaling FFAG field law: $B_y = B_0(r/R_0)^k$ for y = 0, where $r = R_0 + x$. Here, $B_0 = 0.2T$, k = 20 and $R_0 = 3.131$ m.

Below: Relative field errors in the k = 20 scaling FFAG for field strengths $B_0 = 0.05$, 0.1, 0.15 and 0.2T (left to right).

Exponential VFFAG Fields

Above: Fields from the vertical orbit excursion FFAG scaling law $(B_y = B_0 e^{ky} \text{ for } x = 0) \text{ for } k = 5m^{-1} \text{ (left) and } 10m^{-1} \text{ (right)}.$

Below: Relative error plots for VFFAGs with $k = 5m^{-1}$ (top row) and $10m^{-1}$ (bottom row) for field strengths $B_0 = 0.05$, 0.1, 0.15 and 0.2T (left to right), saturation occurs towards bottom right.

Field Strength Upgrades

The iron poles only take up 25% of the circumference of the magnet bore, so if the iron starts to saturate at 1.4T, the maximum field at the edge of the bore can only be 25% of this (0.35T) since all the flux lines have to bunch together to go through the iron. Higher field strength may be achieved in future by using thicker or non-tapering poles.

Right: The corrector magnets used in the SRS at Daresbury Laboratory (designed by Neil Marks) had a very similar principle to omnimagnets but operated at lower fields. They also have windings around the iron return yoke that may produce low-order multipoles using less current.

Other Future Work

- Correction schemes have not yet been used to fine-tune the currents in these magnets; e.g. the higher-order poles have a small dipole defect that could be subtracted out. This will be necessary in the case of each real magnet as well as in the simulations.
- Fitting schemes such as least-squares error fitting of a polynomial can provide better field quality over a finite range than just using the Taylor series at a point.
- Operating with the iron in saturation can provide higher poletip fields at the expense of non-linear operation. It may be possible with very careful calibration.

Slotted Variant for FFAG Correction

- A "hybrid FFAG" uses superconducting fixed-field magnets for main dipole and quadrupole, PLUS:
- "Omni-Corrector Magnet"

Alternative coil configuration shown on bottom half

- The above iron+copper magnet used for:
- Static field/tune error correction in DC mode
- In pulsed/programmable mode (~10kHz bandwidth):
 - Resonance jumping
- Dynamic aperture improvement
- [Optional] Resonant extraction

