Bounded Approximate Solutions of Linear Systems using SVD

Stephen Brooks

December 18, 2023

1 Definitions

The Singular Value Decomposition (SVD) of a complex matrix is conventionally $A=U \Sigma V^{*}$, where M^{*} denotes \bar{M}^{T}. Here, U and V are unitary matrices with $U^{-1}=U^{*}$ and Σ is diagonal with $\Sigma=\operatorname{diag}\left[\sigma_{n}\right]$. For real matrices this is just $A=U \Sigma V^{T}$ and unitarity is equivalent to $U^{-1}=U^{T}$, i.e. orthogonality. In fact, V^{T} is also orthogonal since $\left(V^{T}\right)^{-1}=\left(V^{-1}\right)^{-1}=V=$ $\left(V^{T}\right)^{T}$, which means the simpler definition $A=U \Sigma V$ can be used for the rest of this note.

2 Fundamental Problem

In control systems, one often uses a linear or locally-linear model to determine the required inputs. Suppose an input vector change $\mathbf{x} \in X$ produces an output reponse $A \mathbf{x} \in Y$ that is meant to achieve some desired change $\mathbf{b} \in Y$. The input and output spaces X and Y may have different dimensionalities and therefore A can be a rectangular matrix. This means that an exact solution may not be possible, particularly if $\operatorname{dim} Y>\operatorname{dim} X$. Thus the 'best' solution can be formulated as the minimisation problem of finding $\arg \min |A \mathbf{x}-\mathbf{b}|_{Y}$.

However, particularly in the case of ill-conditioned matrices, the exact solution may require unacceptably large control inputs. What is required practically is the best approximation that can be achieved while \mathbf{x} is not too large. This suggests casting the fundamental problem as

$$
\arg \min _{|\mathbf{x}| X \leq r}|A \mathbf{x}-\mathbf{b}|_{Y}
$$

with $r>0$ being chosen depending on how large a solution is acceptable. As $r \rightarrow \infty$, the value will eventually settle at the exact or optimum solution if one exists.

3 Solution using SVD

The SVD decomposition of A gives

$$
\arg \min _{|\mathbf{x}| X \leq r}|A \mathbf{x}-\mathbf{b}|_{Y}=\arg \min _{|\mathbf{x}|_{X} \leq r}|U \Sigma V \mathbf{x}-\mathbf{b}|_{Y} .
$$

Here, A and Σ are possibly-rectangular matrices mapping from X to Y, V is a square orthogonal matrix mapping X to itself and U is another mapping Y to itself. Note that any orthogonal
matrix U preserves the norm as $|U \mathbf{x}|^{2}=\mathbf{x}^{T} U^{T} U \mathbf{x}=\mathbf{x}^{T} U^{-1} U \mathbf{x}=\mathbf{x}^{T} \mathbf{x}=|\mathbf{x}|^{2}$ so $|U \mathbf{x}|=|\mathbf{x}|$ as norms are non-negative. In particular,

$$
|\mathbf{x}|_{X}=|V \mathbf{x}|_{X} \quad \text { and } \quad|U \Sigma V \mathbf{x}-\mathbf{b}|_{Y}=\left|\Sigma V \mathbf{x}-U^{-1} \mathbf{b}\right|_{Y}
$$

where the second equality has multiplied by the unitary matrix U^{-1}. This means that

$$
\arg \min _{|\mathbf{x}|_{X} \leq r}|A \mathbf{x}-\mathbf{b}|_{Y}=\arg \min _{|V \mathbf{x}|_{X} \leq r}\left|\Sigma V \mathbf{x}-U^{-1} \mathbf{b}\right|_{Y}
$$

Defining vectors $\mathbf{v}=V \mathbf{x}$ and $\mathbf{u}=U^{-1} \mathbf{b}$ this becomes

$$
\arg \min _{|\mathbf{x}|_{X} \leq r}|A \mathbf{x}-\mathbf{b}|_{Y}=V^{-1} \arg \min _{|\mathbf{v}|_{X} \leq r}|\Sigma \mathbf{v}-\mathbf{u}|_{Y}
$$

where the right-hand $\arg \min$ is now understood to find the value of \mathbf{v}, so the premultiplication for $\mathbf{x}=V^{-1} \mathbf{v}$ is required. The problem has now been simplified into one with a diagonal matrix instead of A.

3.1 Exact Minimum Solution

If the unrestricted \arg min also satisfies $|\mathbf{x}|_{X} \leq r$ then it is the solution. The unrestricted minimum is a fixed point of the norm expression squared:

$$
\begin{aligned}
0 & =\frac{\partial}{\partial v_{n}}|\Sigma \mathbf{v}-\mathbf{u}|_{Y}^{2}=\frac{\partial}{\partial v_{n}} \sum_{i=1}^{\operatorname{dim} Y}(\Sigma \mathbf{v}-\mathbf{u})_{i}^{2}=\frac{\partial}{\partial v_{n}} \sum_{i=1}^{\operatorname{dim} Y}\left(1_{i \leq \operatorname{dim} X} \sigma_{i} v_{i}-u_{i}\right)^{2} \\
& =\frac{\partial}{\partial v_{n}}\left(\sigma_{n} v_{n}-u_{n}\right)^{2}=\frac{\partial}{\partial v_{n}}\left(\sigma_{n}^{2} v_{n}^{2}-2 \sigma_{n} v_{n} u_{n}+u_{n}^{2}\right)=2 \sigma_{n}^{2} v_{n}-2 \sigma_{n} u_{n} \\
& \Leftrightarrow \sigma_{n}\left(\sigma_{n} v_{n}-u_{n}\right)=0
\end{aligned}
$$

For each n, this is true if either $v_{n}=u_{n} / \sigma_{n}$ or $\sigma_{n}=0$. In the latter case, the Σ matrix does not range over the full dimensionality of Y and any value of v_{n} may be chosen because the minimum is non-unique. It is usually best to choose $v_{n}=0$ in all such ambiguous cases, since this corresponds to the minimum with smallest $|\mathbf{v}|_{X}=|\mathbf{x}|_{X}$. There is also the case when $\operatorname{dim} Y<\operatorname{dim} X$, where the above equation reduces to $0=0$ for $n>\operatorname{dim} Y$, giving no constraint on v_{n}, which should be set to zero by the same argument. The exact minimum can be written explicitly as

$$
\mathbf{x}=V^{-1}\left[\left(U^{-1} \mathbf{b}\right)_{n} /{ }^{0} \sigma_{n}\right], \quad \text { where } \quad x /{ }^{0} y=\left\{\begin{array}{l}
x / y \quad \text { if } y \neq 0 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

3.2 Constrained Minimum

The function $|\Sigma \mathbf{v}-\mathbf{u}|_{Y}$ does not have multiple disconnected local minima, so if the exact minimum with smallest norm found in the previous section still has $|\mathbf{x}|_{X}>r$, the constrained minimum must have $|\mathbf{x}|_{X}=r$ rather than being an interior point. The local gradient found in the previous section

$$
\nabla_{\mathbf{v}}|\Sigma \mathbf{v}-\mathbf{u}|_{Y}^{2}=2\left[\sigma_{n}^{2} v_{n}-\sigma_{n} u_{n}\right]
$$

must be a scalar multiple of the position \mathbf{v} because otherwise it has some component parallel to the surface of the radius r hypersphere and the value of the function can be reduced. The
gradient is expected to be negative with increasing r, anti-parallel to \mathbf{v}, so for some $\lambda>0$,

$$
\begin{aligned}
\nabla_{\mathbf{v}}|\Sigma \mathbf{v}-\mathbf{u}|_{Y}^{2} & =-2 \lambda^{2} \mathbf{v} \\
\Leftrightarrow 2\left(\sigma_{n}^{2} v_{n}-\sigma_{n} u_{n}\right) & =-2 \lambda^{2} v_{n} \\
\Leftrightarrow \quad\left(\sigma_{n}^{2}+\lambda^{2}\right) v_{n}-\sigma_{n} u_{n} & =0 \\
\Leftrightarrow \quad v_{n} & =\frac{\sigma_{n} u_{n}}{\sigma_{n}^{2}+\lambda^{2}} .
\end{aligned}
$$

For the case where $n>\operatorname{dim} Y$, the gradient of that component is zero as before and $0=-2 \lambda^{2} v_{n}$, so $v_{n}=0$. The constrained minimum can be written explicitly as

$$
\mathbf{x}=V^{-1}\left[\frac{\sigma_{n}\left(U^{-1} \mathbf{b}\right)_{n}}{\sigma_{n}^{2}+\lambda^{2}}\right], \quad \text { where we set } \quad\left(U^{-1} \mathbf{b}\right)_{n}=0 \quad \text { if } n>\operatorname{dim} Y .
$$

The norm of \mathbf{x} decreases monotonically with λ because $|\mathbf{x}|_{X}=|\mathbf{v}|_{X}$ and every element of \mathbf{v} decreases in magnitude with increasing λ. As $\lambda \rightarrow 0$ the constrained minimum tends towards the exact minimum. As $\lambda \rightarrow \infty$, the constrained minimum tends towards $\mathbf{0}$ but if renormalised, the limit has $v_{n}=\sigma_{n} u_{n}$, which is $-\frac{1}{2}$ times the gradient of $|\Sigma \mathbf{v}-\mathbf{u}|_{Y}^{2}$ at $\mathbf{v}=\mathbf{0}$. Thus the large λ limit corresponds to a infinitesimal 'steepest descent' step.

The continuity and monotonicity of $|\mathbf{x}|_{X}=r(\lambda)$ ensures a value of λ can always be found for any value of r between 0 and the norm of the exact solution point. For example, a bisection search or root-finding algorithm can determine λ for a given r, after first checking the exact solution point does not have norm less than r.

3.3 Implementation Note

Using the orthogonal property of U and V, entries $\left(U^{-1} \mathbf{b}\right)_{n}$ should be calculated as the much faster equivalent $\left(U^{T} \mathbf{b}\right)_{n}$ and the premultiplication by V^{-1} should be implemented as V^{T}. Once the SVD is calculated, nothing slower than matrix-vector multiplication is required.

4 Units

Elements of the vector spaces X and Y can be physical quantities with units $[X]$ and $[Y]$ respectively. By definition, A has units $[Y] /[X]$. In the SVD, the entries of U and V have no units as they map within the same space, leaving Σ and its entries σ_{n} with units $[Y] /[X]$. The parameter λ in the previous section was defined to also have units $[Y] /[X]$ but r has units $[X]$.

5 Identity with the Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm involves a 'damped' least squares step, which for a Jacobian matrix J involves solving

$$
\left(J^{T} J+\lambda_{L M} I\right) \mathbf{x}=J^{T} \mathbf{b},
$$

where $\lambda_{L M} \geq 0$ is called the damping factor. If the Jacobian is decomposed via SVD as $J=U \Sigma V$, this becomes

$$
\left(V^{T} \Sigma U^{T} U \Sigma V+\lambda_{L M} I\right) \mathbf{x}=V^{T} \Sigma U^{T} \mathbf{b}
$$

and noting that $U^{T} U=I$ by orthogonality of U ,

$$
\left(V^{T} \Sigma^{2} V+\lambda_{L M} I\right) \mathbf{x}=V^{T} \Sigma U^{T} \mathbf{b}
$$

Pre-multipliying both sides by V and using its orthogonality $V V^{T}=I$ gives

$$
\begin{aligned}
\left(\Sigma^{2} V+\lambda_{L M} V\right) \mathbf{x} & =\Sigma U^{T} \mathbf{b} \\
\Rightarrow \quad\left(\Sigma^{2}+\lambda_{L M} I\right) V \mathbf{x} & =\Sigma U^{T} \mathbf{b}
\end{aligned}
$$

This is starting to look vaguely familiar. Inverting the left-hand side to give an expression for \mathbf{x} yields

$$
\begin{aligned}
\mathbf{x} & =V^{-1}\left(\Sigma^{2}+\lambda_{L M} I\right)^{-1} \Sigma U^{T} \mathbf{b} \\
& =V^{-1}\left(\Sigma^{2}+\lambda_{L M} I\right)^{-1} \Sigma U^{-1} \mathbf{b}
\end{aligned}
$$

Comparing this to the constrained minimum formula with parameter λ from a previous section:

$$
\mathbf{x}=V^{-1}\left[\frac{\sigma_{n}\left(U^{-1} \mathbf{b}\right)_{n}}{\sigma_{n}^{2}+\lambda^{2}}\right]
$$

and noting that $\Sigma=\operatorname{diag}\left[\sigma_{n}\right]$ reveals that these are the same formulae if $\lambda_{L M}=\lambda^{2}$.

6 Constrained Maximum of a Quadratic

As the $|\Sigma \mathbf{v}-\mathbf{u}|_{Y}^{2}$ minimised in the previous sections was a quadratic function of \mathbf{x}, it is natural to wonder if an arbitrary (scalar) quadratic function could be maximised using a similar method: that is, find

$$
\arg \max _{|\mathbf{x}| \leq r} f(\mathbf{x})=\arg \max _{|\mathbf{x}| \leq r}\left(f(\mathbf{0})+\mathbf{g} \cdot \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} H \mathbf{x}\right) .
$$

H is the Hessian matrix of second derivatives, so is symmetric, meaning its SVD decomposition can be written $H=U^{T} \Sigma U$, with U orthogonal. This permits a change of variable

$$
\begin{aligned}
f(\mathbf{x}) & =f(\mathbf{0})+\mathbf{g}^{T} \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} U^{T} \Sigma U \mathbf{x} \\
& =f(\mathbf{0})+\mathbf{g}^{T} U^{T}(U \mathbf{x})+\frac{1}{2}(U \mathbf{x})^{T} \Sigma(U \mathbf{x}) \\
\Rightarrow \quad \arg \max _{|\mathbf{x}| \leq r} f(\mathbf{x}) & =\arg \max _{|U \mathbf{x}| \leq r}\left(f(\mathbf{0})+(U \mathbf{g})^{T}(U \mathbf{x})+\frac{1}{2}(U \mathbf{x})^{T} \Sigma(U \mathbf{x})\right) .
\end{aligned}
$$

Defining $\mathbf{u}=U \mathbf{x}$ and ignoring the constant term, this becomes

$$
\arg \max _{|\mathbf{x}| \leq r} f(\mathbf{x})=U^{T} \arg \max _{|\mathbf{u}| \leq r}\left((U \mathbf{g})^{T} \mathbf{u}+\frac{1}{2} \mathbf{u}^{T} \Sigma \mathbf{u}\right)
$$

The maximised expression is a single sum as Σ is diagonal, so its gradient vector is

$$
\nabla_{\mathbf{u}}\left((U \mathbf{g})^{T} \mathbf{u}+\frac{1}{2} \mathbf{u}^{T} \Sigma \mathbf{u}\right)=\left[(U \mathbf{g})_{n}+\sigma_{n} u_{n}\right]
$$

6.1 Exact Stationary Point

If none of the σ_{n} are zero, f has a stationary point at $\mathbf{u}=\left[-(U \mathbf{g})_{n} / \sigma_{n}\right]$, which is only a maximum if all the σ_{n} are negative.

6.2 Constrained Maximum

A constrained maximum would have, for some $\lambda>0$,

$$
\left[(U \mathbf{g})_{n}+\sigma_{n} u_{n}\right]=\left[\lambda u_{n}\right]
$$

and thus $\mathbf{u}=\left[(U \mathbf{g})_{n} /\left(\lambda-\sigma_{n}\right)\right]$. The value of λ must satisfy

$$
r^{2}=|\mathbf{x}|^{2}=|\mathbf{u}|^{2}=\sum_{n} \frac{(U \mathbf{g})_{n}^{2}}{\left(\lambda-\sigma_{n}\right)^{2}}
$$

The expression on the right has a $+\infty$ singularity whenever $\lambda=\sigma_{n}$ for some n. It is also not monotonic, so there could be many solutions. However, note that $\lambda \rightarrow \infty$ still corresponds to $r \rightarrow 0$, so small r solutions are in the region where $\lambda>\max _{n} \sigma_{n}=\sigma_{\max }$.

What does the other end of this region, $\lambda \rightarrow \sigma_{\max }^{+}$correspond to? First note that if $\sigma_{\max }<0$ then the other end is actually $\lambda \rightarrow 0$, corresponding to the exact maximum (and it really is a maximum because all the σ_{n} are negative). Otherwise, a vector element u_{n} with $\sigma_{n}=\sigma_{\max } \geq 0$ tends to infinity, meaning the solution is asymptotically running up the steepest parabolic ascent direction available to it, as expected of a maximum.

Finally, note that although r^{2} is not a monotonic function of λ, it is a (locally) convex one:

$$
\frac{\mathrm{d}^{2} r^{2}}{\mathrm{~d} \lambda^{2}}=\sum_{n} \frac{6(U \mathbf{g})_{n}^{2}}{\left(\lambda-\sigma_{n}\right)^{4}} \geq 0 .
$$

Taking into account the asymptotic behaviour as $\lambda \rightarrow \infty$, this means r^{2} in the region $\lambda>\sigma_{\max }$ is monotonically decreasing, so a value of λ can always be found for any value of r between 0 and the norm of the exact solution point (or infinity if $\sigma_{\max } \geq 0$, corresponding to a saddle, ridge or minimum valley).

6.3 Summary

The locus of constrained maxima is

$$
\mathbf{x}(\lambda)=U^{T}\left[\frac{(U \mathbf{g})_{n}}{\lambda-\sigma_{n}}\right]
$$

for $\lambda>\max \left\{0, \sigma_{\max }\right\}$. If $\sigma_{\max }<0$ then $\mathbf{x}(0)$ is the exact maximum.

