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1 Definitions

The Singular Value Decomposition (SVD) of a complex matrix is conventionally A = UΣV ∗,
where M∗ denotes M̄T . Here, U and V are unitary matrices with U−1 = U∗ and Σ is diagonal
with Σ = diag[σn]. For real matrices this is just A = UΣV T and unitarity is equivalent to
U−1 = UT , i.e. orthogonality. In fact, V T is also orthogonal since (V T )−1 = (V −1)−1 = V =
(V T )T , which means the simpler definition A = UΣV can be used for the rest of this note.

2 Fundamental Problem

In control systems, one often uses a linear or locally-linear model to determine the required
inputs. Suppose an input vector change x ∈ X produces an output reponse Ax ∈ Y that is
meant to achieve some desired change b ∈ Y . The input and output spaces X and Y may
have different dimensionalities and therefore A can be a rectangular matrix. This means that
an exact solution may not be possible, particularly if dimY > dimX. Thus the ‘best’ solution
can be formulated as the minimisation problem of finding argmin |Ax− b|Y .

However, particularly in the case of ill-conditioned matrices, the exact solution may require
unacceptably large control inputs. What is required practically is the best approximation that
can be achieved while x is not too large. This suggests casting the fundamental problem as

arg min
|x|X≤r

|Ax− b|Y

with r > 0 being chosen depending on how large a solution is acceptable. As r → ∞, the value
will eventually settle at the exact or optimum solution if one exists.

3 Solution using SVD

The SVD decomposition of A gives

arg min
|x|X≤r

|Ax− b|Y = arg min
|x|X≤r

|UΣV x− b|Y .

Here, A and Σ are possibly-rectangular matrices mapping from X to Y , V is a square orthogonal
matrix mapping X to itself and U is another mapping Y to itself. Note that any orthogonal

1



matrix U preserves the norm as |Ux|2 = xTUTUx = xTU−1Ux = xTx = |x|2 so |Ux| = |x| as
norms are non-negative. In particular,

|x|X = |V x|X and |UΣV x− b|Y = |ΣV x− U−1b|Y ,

where the second equality has multiplied by the unitary matrix U−1. This means that

arg min
|x|X≤r

|Ax− b|Y = arg min
|V x|X≤r

|ΣV x− U−1b|Y .

Defining vectors v = V x and u = U−1b this becomes

arg min
|x|X≤r

|Ax− b|Y = V −1 arg min
|v|X≤r

|Σv − u|Y ,

where the right-hand argmin is now understood to find the value of v, so the premultiplication
for x = V −1v is required. The problem has now been simplified into one with a diagonal matrix
instead of A.

3.1 Exact Minimum Solution

If the unrestricted argmin also satisfies |x|X ≤ r then it is the solution. The unrestricted
minimum is a fixed point of the norm expression squared:

0 =
∂

∂vn
|Σv − u|2Y =

∂

∂vn

dimY∑
i=1

(Σv − u)2i =
∂

∂vn

dimY∑
i=1

(1i≤dimXσivi − ui)
2

=
∂

∂vn
(σnvn − un)

2 =
∂

∂vn
(σ2

nv
2
n − 2σnvnun + u2n) = 2σ2

nvn − 2σnun

⇔ σn(σnvn − un) = 0.

For each n, this is true if either vn = un/σn or σn = 0. In the latter case, the Σ matrix
does not range over the full dimensionality of Y and any value of vn may be chosen because
the minimum is non-unique. It is usually best to choose vn = 0 in all such ambiguous cases,
since this corresponds to the minimum with smallest |v|X = |x|X . There is also the case when
dimY < dimX, where the above equation reduces to 0 = 0 for n > dimY , giving no constraint
on vn, which should be set to zero by the same argument. The exact minimum can be written
explicitly as

x = V −1[(U−1b)n/
0σn], where x/0y =

{
x/y if y ̸= 0
0 otherwise

.

3.2 Constrained Minimum

The function |Σv − u|Y does not have multiple disconnected local minima, so if the exact
minimum with smallest norm found in the previous section still has |x|X > r, the constrained
minimum must have |x|X = r rather than being an interior point. The local gradient found in
the previous section

∇v|Σv − u|2Y = 2[σ2
nvn − σnun]

must be a scalar multiple of the position v because otherwise it has some component parallel
to the surface of the radius r hypersphere and the value of the function can be reduced. The
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gradient is expected to be negative with increasing r, anti-parallel to v, so for some λ > 0,

∇v|Σv − u|2Y = −2λ2v

⇔ 2(σ2
nvn − σnun) = −2λ2vn

⇔ (σ2
n + λ2)vn − σnun = 0

⇔ vn =
σnun

σ2
n + λ2

.

For the case where n > dimY , the gradient of that component is zero as before and 0 = −2λ2vn,
so vn = 0. The constrained minimum can be written explicitly as

x = V −1

[
σn(U

−1b)n
σ2
n + λ2

]
, where we set (U−1b)n = 0 if n > dimY.

The norm of x decreases monotonically with λ because |x|X = |v|X and every element of v
decreases in magnitude with increasing λ. As λ → 0 the constrained minimum tends towards
the exact minimum. As λ → ∞, the constrained minimum tends towards 0 but if renormalised,
the limit has vn = σnun, which is −1

2 times the gradient of |Σv− u|2Y at v = 0. Thus the large
λ limit corresponds to a infinitesimal ‘steepest descent’ step.

The continuity and monotonicity of |x|X = r(λ) ensures a value of λ can always be found
for any value of r between 0 and the norm of the exact solution point. For example, a bisection
search or root-finding algorithm can determine λ for a given r, after first checking the exact
solution point does not have norm less than r.

3.3 Implementation Note

Using the orthogonal property of U and V , entries (U−1b)n should be calculated as the much
faster equivalent (UTb)n and the premultiplication by V −1 should be implemented as V T . Once
the SVD is calculated, nothing slower than matrix-vector multiplication is required.

4 Units

Elements of the vector spaces X and Y can be physical quantities with units [X] and [Y ]
respectively. By definition, A has units [Y ]/[X]. In the SVD, the entries of U and V have no
units as they map within the same space, leaving Σ and its entries σn with units [Y ]/[X]. The
parameter λ in the previous section was defined to also have units [Y ]/[X] but r has units [X].

5 Identity with the Levenberg–Marquardt Algorithm

The Levenberg–Marquardt algorithm involves a ‘damped’ least squares step, which for a Jaco-
bian matrix J involves solving

(JTJ + λLMI)x = JTb,

where λLM ≥ 0 is called the damping factor. If the Jacobian is decomposed via SVD as
J = UΣV , this becomes

(V TΣUTUΣV + λLMI)x = V TΣUTb
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and noting that UTU = I by orthogonality of U,

(V TΣ2V + λLMI)x = V TΣUTb.

Pre-multipliying both sides by V and using its orthogonality V V T = I gives

(Σ2V + λLMV )x = ΣUTb

⇒ (Σ2 + λLMI)V x = ΣUTb.

This is starting to look vaguely familiar. Inverting the left-hand side to give an expression for x
yields

x = V −1(Σ2 + λLMI)−1ΣUTb

= V −1(Σ2 + λLMI)−1ΣU−1b.

Comparing this to the constrained minimum formula with parameter λ from a previous section:

x = V −1

[
σn(U

−1b)n
σ2
n + λ2

]

and noting that Σ = diag[σn] reveals that these are the same formulae if λLM = λ2.

6 Constrained Maximum of a Quadratic

As the |Σv−u|2Y minimised in the previous sections was a quadratic function of x, it is natural
to wonder if an arbitrary (scalar) quadratic function could be maximised using a similar method:
that is, find

argmax
|x|≤r

f(x) = argmax
|x|≤r

(
f(0) + g · x+

1

2
xTHx

)
.

H is the Hessian matrix of second derivatives, so is symmetric, meaning its SVD decomposition
can be written H = UTΣU , with U orthogonal. This permits a change of variable

f(x) = f(0) + gTx+
1

2
xTUTΣUx

= f(0) + gTUT (Ux) +
1

2
(Ux)TΣ(Ux)

⇒ argmax
|x|≤r

f(x) = arg max
|Ux|≤r

(
f(0) + (Ug)T (Ux) +

1

2
(Ux)TΣ(Ux)

)
.

Defining u = Ux and ignoring the constant term, this becomes

argmax
|x|≤r

f(x) = UT arg max
|u|≤r

(
(Ug)Tu+

1

2
uTΣu

)
.

The maximised expression is a single sum as Σ is diagonal, so its gradient vector is

∇u

(
(Ug)Tu+

1

2
uTΣu

)
= [(Ug)n + σnun].

6.1 Exact Stationary Point

If none of the σn are zero, f has a stationary point at u = [−(Ug)n/σn], which is only a
maximum if all the σn are negative.
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6.2 Constrained Maximum

A constrained maximum would have, for some λ > 0,

[(Ug)n + σnun] = [λun]

and thus u = [(Ug)n/(λ− σn)]. The value of λ must satisfy

r2 = |x|2 = |u|2 =
∑
n

(Ug)2n
(λ− σn)2

.

The expression on the right has a +∞ singularity whenever λ = σn for some n. It is also not
monotonic, so there could be many solutions. However, note that λ → ∞ still corresponds to
r → 0, so small r solutions are in the region where λ > maxn σn = σmax.

What does the other end of this region, λ → σ+
max correspond to? First note that if σmax < 0

then the other end is actually λ → 0, corresponding to the exact maximum (and it really is a
maximum because all the σn are negative). Otherwise, a vector element un with σn = σmax ≥ 0
tends to infinity, meaning the solution is asymptotically running up the steepest parabolic ascent
direction available to it, as expected of a maximum.

Finally, note that although r2 is not a monotonic function of λ, it is a (locally) convex one:

d2r2

dλ2 =
∑
n

6(Ug)2n
(λ− σn)4

≥ 0.

Taking into account the asymptotic behaviour as λ → ∞, this means r2 in the region λ > σmax

is monotonically decreasing, so a value of λ can always be found for any value of r between 0
and the norm of the exact solution point (or infinity if σmax ≥ 0, corresponding to a saddle,
ridge or minimum valley).

6.3 Summary

The locus of constrained maxima is

x(λ) = UT
[
(Ug)n
λ− σn

]
for λ > max{0, σmax}. If σmax < 0 then x(0) is the exact maximum.
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