CEBAF 20GeV FFA Upgrade

First attempts at permanent magnets Comparison of 1 vs. 2 FFA loops More-optimised magnet designs

CEBAF ~20GeV FFA Upgrade

More in Ryan Bodenstein's talk

- CEBAF is currently a 5.5-turn racetrack RLA
 - 123MeV injector, 1090MeV North & South linacs
 - Maximum output energy 12GeV
 - Five stacked electromagnetic arcs on East & West
- Propose replacing one or two EM lines by multi-pass FFAs for extended energy reach
 - R=80.6m so 20GeV \rightarrow 0.83T mean bending field
 - Non-scaling FFAs used for magnetic efficiency
 - Permanent magnets uses for power, cost savings

Parameters from IPAC'21 Paper

- Take parameters directly from the paper
- Note peak fields

20-24 GeV FFA CEBAF Energy Upgrade, S.A. Bogacz et al., Proc. IPAC'21

Element	Length	Angle	Dipole	Gradient
	[m]	[°]	[T]	[T/m]
BF	0.625	0.5	0.681	250.91
Ο	0.05	0		
BD	0.5382	0.5	0.941	-233.13
0	0.05	0		

Table 1: Energy doubler FFA arc cell.

the 10-22 GeV beams are all confined to a region -5mm < x < 4mm. The orbits and optics of the unit cell for the

Magnet	Dipole at x=0 (T)	Gradient (T/m)	Xmin (mm)	Xmax (mm)	B(Xmin) (T)	B(Xmax) (T)
BF	0.681	250.91	-5	4	-0.574	1.685
BD	0.941	-233.13	-5	4	2.107	0.008

Permanent Magnet Design Rules

- Open midplane full height of 4mm (y=±2mm)
 - Same as NSLS-IIU upgrade magnet (2020)
 - Which is also 250T/m
- Beam-centroid-to-magnet clearance of 5mm
 - Again, same as NSLSII-U, has R=5mm aperture
- B_r=1.30T material
 - E.g. AllStar N42EH grade
 - Intrinsic coercivity H_{ci}=29.0kOe (without radiation)

- I.e. demagnetises totally at μ_0 H=-2.9T (expect "knee" ~-2.7T)

Run HalbachArea Script

- <u>https://stephenbrooks.org/ap/halbacharea/</u>
- Good field region of 9mm full width means:
 -+/-4.5mm if re-centered in magnet
 - Try R_{aperture}=10mm to give >5mm clearance
- Does not converge, fields 25% wrong

Reduce to R_{aperture}=7.5mm

Magnets converge but come out giant

Field Overshoot at High Gradient

- The 5mm clearance distance translates to a larger field increase for higher gradients
 - E.g. at 250.9T/m it corresponds to 1.255T
 - Makes 2.107T max field into 3.272T at "pole tip"
 - At 125.5T/m it corresponds to 0.627T
 - Now only becomes 2.689T at pole tip
- Not exact but gives idea of magnet difficulty
 - Lower gradient can make magnet smaller even though good field aperture becomes larger

* not scaling FFA laws

FFA scaling* laws

Scaling type (by factor a)	Length	Angle	Dipole	Gradient	Quad offset (=dipole/grad) & orbit excursion
Momentum (~energy)	1	1	а	а	1
Machine radius	а	1	a ⁻¹	a ⁻²	а
FFA beta length (fixed bend radius, fixed cell tune)	а	а	1	a ⁻²	a²
FFA arc-to-straight (=row 3/row 2)	1	а	а	1	а
FFA radius with fixed orbit excursion and field (row 2*row 1/sqrt(row 3))	a ^{1/2}	a ^{-1/2}	1	1	1

This one is the knob for changing gradients and orbit range: an engineering trade-off

September 28, 2021

Lattice Scaled to 50% Gradient

Original

Magnet	Dipole at x=0 (T)	Gradient (T/m)	Xmin (mm)	Xmax (mm)	B(Xmin) (T)	B(Xmax) (T)
BF	0.681	250.91	-5	4	-0.574	1.685
BD	0.941	-233.13	-5	4	2.107	0.008

• 50% gradient, 2x beam excursion

Magnet	Dipole at x=0 (T)	Gradient (T/m)	Xmin (mm)	Xmax (mm)	B(Xmin) (T)	B(Xmax) (T)
BF	0.681	125.46	-10	8	-0.574	1.685
BD	0.941	-116.57	-10	8	2.107	0.008

NB: length and bend angles of elements to be multiplied by sqrt(2)

Gradient Tradeoff Example

±10mm ±14mm ±18mm ±25mm ±35mm ±50mm 58T/m 41T/m 32T/m 23T/m 17T/m 12T/m

(All using CBETA clearances)

The gradient of the cell can be scaled, which results in orbits that are closer together but have the same magnetic field at each orbit. In other words, the dipole is constant but the gradient scales inversely with orbit separation.

The clearance requirements create an area optimum.

BD

Clearance Tradeoff Example

CBETA clearances ~12+2+3mm Beam-centroid-to-pipe, pipe, pipe-to-magnet

Reduced clearances 6+2+3mm and re-optimise gradient

Smaller clearances allow even more efficient magnets by increasing the gradient to the new higher optimum.

However, smaller clearances are harder to engineer and magnify relative errors from position misalignments.

QF

BD

Clearance vs. Gradient Example

Using R_{aperture}=15mm (R_{field}=10mm)

- 50% gradient scaled magnet converges <u>with</u> <u>the full 5mm clearance</u>
 - But the magnets still come out giant!

>30cm

Need Some Ideas (idea #1)

- Now that R_{aperture}=15mm...
- There's a lot of unused space above and below the beams
- Could use "oval aperture" idea from Dejan's hadron therapy gantry
 - While still having an open midplane

[IPAC'21] Halbach Magnet Variations

- Demonstrated (in accelerator)
 - Field tuning with iron rods
 - Combined-function magnets
- In development
 Open midplane magnets
- Future research
 - Oval apertures 🗸
 - Multiple apertures

Stephen Brooks, FFA'21 Workshop

Unused Region in BD (idea #2)

From the orbit diagram it appears that while the orbits in BF are -5mm < x < 4mm, the orbits in BD are -3.5mm < x < 3.25mm. Don't build magnet where you don't need it!

Element	Length	Angle	Dipole	Gradient
	[m]	[°]	[T]	[T/m]
BF	0.625	0.5	0.681	250.91
0	0.05	0		
BD	0.5382	0.5	0.941	-233.13
0	0.05	0		

Table 1: Energy doubler FFA arc cell.

Trimming the BD Aperture Range

• 50% gradient, 2x beam excursion

Magnet	Dipole at x=0 (T)	Gradient (T/m)	Xmin (mm)	Xmax (mm)	B(Xmin) (T)	B(Xmax) (T)
BF	0.681	125.46	-10	8	-0.574	1.685
BD	0.941	-116.57	-10	8	2.107	0.008

With reduced BD aperture range

Magnet	Dipole at x=0 (T)	Gradient (T/m)	Xmin (mm)	Xmax (mm)	B(Xmin) (T)	B(Xmax) (T)
BF	0.681	125.46	-10	8	-0.574	1.685
BD	0.941	-116.57	-7	6.5	1.757	0.183

Peak fields better balanced between magnets (also minimises SR)

NB: length and bend angles of elements to be multiplied by sqrt(2)

Finally!

Small magnets, good field, full 5mm clearance

Demagnetisation?

BF

BD

Red areas show μ_0 H < -1.5T, yellow -1.5 < μ_0 H < -1.0T, etc. Stripes are 0.1T intervals.

Looks like worst reverse flux value is around -2.3T, knee is -2.7T, likely OK without radiation but not much margin.

B-H Curve and Demagnetisation

What about with 100% gradients?

- BF converges but is still rather large
- Probably should avoid super-high (>150T/m) gradients unless good reason
 - E.g. path length

Summary (IPAC'21 magnets)

- Got a feasible magnet but had to employ several tricks:
 - Scaled lattice to 50% gradient (double orbit range)
 - Reduce circular aperture to vertically ±5mm oval
 - Trim BD good field range to cover only orbits
- Future work:
 - Is 50% (~120T/m) gradient the optimum?
 - Prediction of radiation dose limit (CBETA model)
- Are any design rules/assumptions wrong?

Existing 12GeV CEBAF Energies

Linac passes	Linac	Energy (MeV)	SR (MeV)	Line	E_Injector	E_Linac (M	leV)	
0	injector	123.00	0.00	injector	123	1090		
1	North-1	1213.00	0.00	EM1E				
2	South-1	2303.00	0.04	EM1W				
3	North-2	3392.95	0.20	EM2E				
4	South-2	4482.76	0.61	EM2W				
5	North-3	5572.15	1.45	EM3E				
6	South-3	6660.70	2.95	EM3W				
7	North-4	7747.75	5.41	EM4E				
8	South-4	8832.34	9.13	EM4W				
9	North-5	9913.21	14.49	EM5E				
10	South-5	10988.71	21.88	EM5W	target (Ha	ls A,B,C)		
11	North-6	12056.83		or target (Hall D)			
			Total					
			56.16777					

Upgraded CEBAF Injector Energy

- Avoid large energy ratios in linacs to >20GeV
- Three new RF modules of 90MeV each
 - Two passes through these with a single conventional return loop
- Use existing injector at 110MeV
- Total energy: 110+2*(3*90) = 650MeV

Energies with One FFA (4+7 turns)

Linac passes Linac	Energy (MeV)	SR (MeV)	Line	E_Injector	E_Linac (N	/leV)	Low range:	Energy (M	SR (MeV)	E_Injector	E_Linac (M	eV)
0 injector	650.00	0.00	injector	650	1090			650.00	0.00	650	925	
1 North-1	1740.00	0.01	EM1E					1575.00	0.01		929.6626	
2 South-1	2829.99	0.10	EM1W					2499.99	0.06			
3 North-2	3919.89	0.35	EM2E					3424.93	0.21	Lina	acs a	diusted
4 South-2	5009.54	0.95	EM2W					4349.73	0.54			ajuolou
5 North-3	6098.59	2.08	EM3E					5274.19	1.16	925	5-109	OMeV for
6 South-3	7186.51	4.00	EM3W					6198.03	2.21		4000/	
7 North-4	8272.51	7.03	EM4E					7120.81	3.86	50-	100%	b energy
8 South-4	9355.48	11.50	EM4W					8041.95	6.28	tun	ahility	
9 North-5	10433.99	59.33	FFA-1E					8960.68	45.36	turi	ability	
10 South-5	11464.66	67.26	FFA-1W					9840.32	54.00			
11 North-6	12487.40	72.91	FFA-2E					10711.32	61.68			
12 South-6	13504.49	75.93	FFA-2W					11574.64	67.98			
13 North-7	14518.57	76.55	FFA-3E					12431.66	72.65			
14 South-7	15532.02	75.35	FFA-3W					13284.02	75.48			
15 North-8	16546.67	73.48	FFA-4E					14133.53	76.57			
16 South-8	17563.19	72.80	FFA-4W					14981.96	76.17			
17 North-9	18580.39	75.89	FFA-5E					15830.79	74.80			
18 South-9	19594.50	86.04	FFA-5W					16680.99	73.28			
19 North-10	20598.47	107.42	FFA-6E					17532.71	72.78			
20 South-10	21581.04	143.72	FFA-6W					18384.93	74.84	Ratio		
21 North-11	22527.32	198.80	FFA-7E	or target (Hall D)			19235.10	81.48	2.51402	2.58427	for 8.9-23GeV FFA
22 South-11	23418.52		target (Ha	lls A,B,C)				20078.62				
		Total							Total			
		1211.476							921.3824			
Half ener	٤ 11709.26											

Energies with Two FFAs (3+(4+4))

Linac passes Lina	c Energy (MeV)	SR (MeV)	Line	E_Injector	E_Linac (N	/leV)	Low range:	Energy (M	SR (MeV)	E_Injector	E_Linac (N	leV)
0 inje	ctor 650.00	0.00	injector	650	1090			650.00	0.00	650	925	
1 Nort	th-1 1740.00	0.01	EM1E					1575.00	0.01		929.6626	
2 Sout	th-1 2829.99	0.10	EM1W					2499.99	0.06			
3 Nort	th-2 3919.89	0.35	EM2E					3424.93	0.21			
4 Sout	th-2 5009.54	0.95	EM2W					4349.73	0.54			
5 Nort	th-3 6098.59	2.08	EM3E					5274.19	1.16			
6 Sout	th-3 7186.51	4.00	EM3W					6198.03	2.21			
7 Nort	th-4 8272.51	5.02	FFA1-1E					7120.81	4.28			
8 Sout	th-4 9357.49	5.70	FFA1-1W					8041.53	4.89			
9 Nort	th-5 10441.79	7.08	FFA1-2E					8961.64	5.42			
10 Sout	th-5 11524.71	10.51	FFA1-2W					9881.22	6.21			
11 Nort	th-6 12604.20	18.06	FFA1-3E					10800.02	7.91			
12 Sout	th-6 13676.14	32.61	FFA1-3W					11717.10	11.53			
13 Nort	th-7 14733.53	57.11	FFA1-4E					12630.58	18.35	Ratio FFA1		
14 Sout	th-7 15766.42	95.82	FFA1-4W					13537.22	30.20	2.214132	2.253521	for 7.1-16GeV
15 Nort	th-8 16760.59	53.80	FFA2-1E					14432.02	42.31			
16 Sout	th-8 17796.80	61.90	FFA2-1W					15314.70	46.04			
17 Nort	th-9 18824.89	73.41	FFA2-2E					16193.66	50.39			
18 Sout	th-9 19841.48	90.13	FFA2-2W					17068.27	55.92			
19 Nort	th-10 20841.35	113.55	FFA2-3E					17937.35	63.24			
20 Sout	th-10 21817.80	145.47	FFA2-3W					18799.11	73.14	Ratio FFA2	2	
21 Nort	th-11 22762.33	186.76	FFA2-4E	or target (Hall D)			19650.96	86.54	1.57721	1.642857	for 14-23 GeV
22 Sout	th-11 23665.56		target (Ha	lls A,B,C)				20489.43				
		Total							Total			
		964.4367							510.5709			
Half	energ 11832.78											

Energies with Two FFAs (3+(5+3))

Linac passes	Linac	Energy (MeV)	SR (MeV)	Line	E_Injector	E_Linac (N	/leV)	Low range:	Energy (M	SR (MeV)	E_Injector	E_Linac (N	leV)
0	injector	650.00	0.00	injector	650	1090			650.00	0.00	650	925	
1	North-1	1740.00	0.01	EM1E					1575.00	0.01		929.6626	
2	South-1	2829.99	0.10	EM1W					2499.99	0.06			
3	North-2	3919.89	0.35	EM2E					3424.93	0.21			
4	South-2	5009.54	0.95	EM2W					4349.73	0.54			
5	North-3	6098.59	2.08	EM3E					5274.19	1.16			
6	South-3	7186.51	4.00	EM3W					6198.03	2.21			
7	North-4	8272.51	15.24	FFA1-1E					7120.81	12.04			
8	South-4	9347.27	17.33	FFA1-1W					8033.77	14.65			
9	North-5	10419.94	18.35	FFA1-2E					8944.13	16.66			
10	South-5	11491.59	18.63	FFA1-2W					9852.46	17.93			
11	North-6	12562.95	19.04	FFA1-3E					10759.53	18.49			
12	South-6	13633.91	21.16	FFA1-3W					11666.04	18.66			
13	North-7	14702.75	27.37	FFA1-4E					12572.38	19.05			
14	South-7	15765.38	40.98	FFA1-4W					13478.33	20.68			
15	North-8	16814.40	65.39	FFA1-5E					14382.65	24.90	Ratio FFA1		
16	South-8	17839.02	105.31	FFA1-5W					15282.75	33.58	2.505194	2.535211	for 7.1-18GeV
17	North-9	18823.70	77.26	FFA2-1E					16174.17	56.46			
18	South-9	19836.45	90.88	FFA2-1W					17042.71	61.78			
19	North-10	20835.56	109.46	FFA2-2E					17905.94	68.34			
20	South-10	21816.10	134.44	FFA2-2W					18762.60	76.59	Ratio FFA2		
21	North-11	22771.66	166.95	FFA2-3E	or target (Hall D)			19611.01	87.40	1.407903	1.4375	for 16-23 GeV
22	South-11	23694.70		target (Ha	lls A,B,C)				20448.61				
			Total							Total			
			935.2956							551.3943			
	Half energ	11847.35											

Lattice Optimisation Rules

- Minimise maximum field on any beam orbit
- Cell angle = 2° clockwise (-2°)
- Overall radius of curvature = 80.6m
 Ensures cell length of 2.81347m
- Both drifts are 10cm long

– Packing factor 92.9%

• All cell tunes between 0.025-0.425, x,y planes

- Wide range to compensate for energy adjustment

MAD-style Lattices

Parameter	One FFA	4+4 FFA1	4+4 FFA2	5+3 FFA1	5+3 FFA2	Units
Emin	8.9	7.1	14	7.1	16	GeV
Emax	23	16	23	18	23	GeV
Eref	15.95	11.55	18.5	12.55	19.5	GeV
BF length	1.36109	2.09794	1.68482	1.57127	1.49155	m
BF angle	-0.05722	-1.73802	-1.14623	-0.65227	-0.98835	degrees
BF quad	-48.649	-29.730	-65.616	-35.135	-80.781	T/m
BD length	1.25238	0.51553	0.92865	1.04220	1.12192	m
BD angle	-1.94278	-0.26198	-0.85377	-1.34773	-1.01165	degrees
BD quad	43.393	93.393	86.787	42.943	76.276	T/m

Dipoles calculated from length, angle and Eref

Max Field on Beams

SR Loss Per Half-Turn

Performance Comparison

Option	Max Field (T)	SR Loss (MeV)	Final Energy (MeV)
One FFA	2.007	1211.48	23418.52
Two FFAs (4+4)	1.495	964.44	23665.56
Two FFAs (5+3)	1.489	935.30	23694.70

 Two FFAs should be considerably better from magnet point of view, particularly radiation hardness due to the decreased fields

Path Length

Orbit Excursion

Lattice	Orbit range in BF (mm)	Orbit range in BD (mm)
One FFA	56.74	41.57
4+4 FFA1	42.61	27.89
4+4 FFA2	21.34	14.05
5+3 FFA1	54.79	39.07
5+3 FFA2	14.95	10.66

- Values given are full ranges (xmax-xmin)
 CBETA would be 50mm in focussing magnet
- Generally the low energy FFA has a CBETA-like orbit excursion and FFA2 is much smaller

Could go below 2°/cell in FFA1 to reduce range

Summary (one vs. two FFAs)

- Using two FFAs reduced maximum field on beam from ~2.0T to 1.5T
 - Should lead to a substantial improvement in permanent magnet practicality
- Two FFA design has 22% less synchrotron radiation power loss than one FFA
- New lattices are baseline as of July 30th 2021
 "5+3" is marginally better than "4+4"

Max Field on Beams

Magnets for July 30th 4+4 FFA2

 Wanted to replace central rectangular pieces with wedges to avoid slipping

Reduce 32 to 24 pieces per magnet (CBETA=16)

Try Larger Clearances

 NSLS-IIU recently doubled their exit slot height from 4mm to 8mm (y=±4mm)

Allows vacuum chamber inside magnet

• Could try doing the same

 Also double beam-to-magnet clearance from 5mm to 10mm (for 20mm full height central aperture)

 Rescale gradients on July 30th lattice to 50% to avoid field overshoot in larger clearance gap

ESRF Upgrade Chamber ~9mm Slot

Layout of the Vacuum System for a New ESRF Storage Ring, M. Hahn et al., Proc. IPAC'14

Magnets: 4+4 FFA2, 50% gradient

 Should be very similar, but 2x the size and 4x the area

Demagnetisation in IPAC'21 magnets

Red areas show μ_0 H < -1.5T, yellow -1.5 < μ_0 H < -1.0T, etc. Stripes are 0.1T intervals.

Looks like worst reverse flux value is around -2.3T, knee is -2.7T, likely OK without radiation but not much margin.

Demagnetisation in new magnets

BF

BD

50% gradient / large clearance

BF

BD

Very similar, scaled up 2x

All Magnets for 5+3 FFA1 and FFA2

BF

BD

FFA2 magnets scaled to 50% gradient, FFA1 at 100% (aperture already large)

Summary (updated magnets)

- Reduced peak field allows larger apertures
 - Easier to fit vacuum chamber and beam through
 - The 10mm-to-magnet should give 7-8mm to pipe
- What height should the synchrotron radiation slot be?
 - E.g. 8mm full height minus both sides of chamber
 - When known, can optimise lattice gradient
 - Scaling law independent of maximum field, SR etc.
- LDRD funding from Oct 2021 \rightarrow prototypes