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Abstract
Laser Doppler cooled ion traps can produce stationary

bunches of ions with extremely low velocity spread (0.6 m/s
RMS) and emittance (10−13 m normalised). This corre-
sponds to temperatures of a few milli-Kelvin and allows
the ions to settle into a fixed lattice analogous to a solid
crystal, but with the Coulomb repulsion balanced by the
trapping force, rather than a chemical bond. Extraction of
such a bunch into a beamline could provide a new regime
of ultra-low emittance beams if the emittance is preserved
through the extraction operation. This paper shows that ex-
traction from the ion trap and initial acceleration does not
cause drastic growth, thus preserving the ultra-low emittance
nature of the bunch. Techniques for compensating coherent
‘emittance growth’ effects such as nonlinear bunch distortion
are also investigated.

INTRODUCTION
Ultra-cold bunches with low emittance can produce very

small focal points with high density [1, 2]. Paul type ion
traps can also form the basis of quantum computers [3]
so even the ground state of position can be achieved with
laser cooling. Ion traps for accelerator applications have
been constructed at Hiroshima University [4] and Rutherford
Appleton Laboratory [5]. The Hiroshima ion trap includes
laser cooling and forms Coulomb crystals. Extraction has
been studied there [6, 7], concentrating on one-dimensional
chains of ions. This paper studies extraction and transport of
a three-dimensional Coulomb crystal, which does not appear
to have been simulated in the literature before.

TRAP FIELD MODEL
The Paul trap geometry is used here, where longitudi-

nal (𝑧 axis) focussing of the ions is provided by DC elec-
trodes, while transverse (𝑥, 𝑦) focussing is an RF electrostatic
quadrupole, which acts analogously to alternating gradient
focussing in accelerators.

For extraction studies, a simple field model is desired that
still has a near-harmonic central potential and (unlike the
harmonic potential) validity to long distances away from
the trap. The 150 m wavelength of the 𝑓 = 2 MHz RF is
long enough relative to the trap that magnetic fields may be
neglected and a point-source electrostatic solution is used
for each timestep:

𝑉 (x, 𝑡) =
∑︁
𝑛

𝑈𝑛

|x − e𝑛 |
=

∑︁
𝑛

𝑈DC
𝑛 +𝑈RF

𝑛 cos(2𝜋 𝑓 𝑡)
|x − e𝑛 |

.
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Here, e𝑛 are the positions of point ‘electrodes’ with strength
𝑈𝑛. Six electrodes are used:

e±𝑥 = (±𝑟trap, 0, 0), e±𝑦 = (0,±𝑟trap, 0), e±𝑧 = (0, 0,±𝑟trap),

where 𝑟trap = 3 cm. The Paul trap sets

𝑈RF
±𝑥 = 𝑢tr, 𝑈RF

±𝑦 = −𝑢tr, 𝑈DC
±𝑥,𝑦 = 𝑢dc, 𝑈DC

±𝑧 = 𝑢lg + 𝑢dc,

with all other values zero. Values of 𝑢lg = 0.054 V.m and
𝑢tr = 5.6452 V.m produce a spherical Coulomb crystal of
40Ca+ at this frequency. An offset 𝑢dc is added to all the
electrodes, which gives the whole trap a DC bias Δ𝑉 (0) =
6𝑢dc
𝑟trap

and affects the bunch acceleration when extracted.
To second order, the potential produced by e+𝑥 near x = 0

is

𝑉 (x) ≃ 𝑈+𝑥
𝑟trap

+ 𝑈+𝑥𝑥

𝑟2
trap

+
𝑈+𝑥 (𝑥2 − 1

2 𝑦
2 − 1

2 𝑧
2)

𝑟3
trap

,

and similarly for the other electrodes. This allows the poten-
tial coefficient of 𝑥2, 𝑘𝑥 = 1

2
𝜕2𝑉
𝜕𝑥2 , to be calculated

𝑘𝑥 =
𝑈+𝑥 +𝑈−𝑥 − 1

2𝑈+𝑦 − 1
2𝑈−𝑦 − 1

2𝑈+𝑧 − 1
2𝑈−𝑧

𝑟3
trap

,

which is proportional to the focussing strength. Cyclic
permutations give the formulae for 𝑘𝑦 and 𝑘𝑧 . Note that
𝑘𝑥 + 𝑘𝑦 + 𝑘𝑧 = 0, which is a consequence of ∇ · E = 0.
Assuming 𝑈+𝑖 = 𝑈−𝑖 and subtracting 1

3 (𝑘𝑥 + 𝑘𝑦 + 𝑘𝑧) = 0
gives

2
3
𝑘𝑥 −

1
3
𝑘𝑦 −

1
3
𝑘𝑧 =

2𝑈+𝑥 −𝑈+𝑦 −𝑈+𝑧

𝑟3
trap

,

which can be satisfied by setting 𝑈±𝑖 = 𝑟3
trap𝑘𝑖/3.

Including the dynamical focussing effect of the RF gives
equivalent smooth focussing strengths 𝑘̄𝑖 that can focus in
all three places at once, i.e. 𝑘̄𝑥 + 𝑘̄𝑦 + 𝑘̄𝑧 > 0. The 𝑘̄𝑖 can
be derived from 𝑘DC

𝑖
and 𝑘RF

𝑖
via numerical integration or

finding eigenvalues of the Mathieu equation [8, 9], but there
is no analytic formula.

Extraction Methods
The simplest method is uncontrolled extraction where

𝑈+𝑧 is set to zero for 𝑡 ≥ 𝑡extract. The beam will pass through
e+𝑧 but not encounter a field singularity.

Balanced extraction is also considered, which sets 𝑈+𝑧
to zero while simultaneously doubling 𝑈−𝑧 . This has the
advantage of keeping 𝑘𝑧 the same before and after 𝑡extract.

The potentials for these two extraction methods are com-
pared in Fig. 1.



Figure 1: Trap potential along the 𝑧 axis before and after
extraction, for two different methods, with Δ𝑉 (0) = 75 V.

ANALYTIC FORMULA FOR ZERO
EMITTANCE GROWTH TRANSPORT

Consider a Coulomb crystal of 𝑁 ions, with positions x𝑛
and charge 𝑞. The space charge force on particle 𝑛 is

Fsc
𝑛 =

𝑞2

4𝜋𝜖0

∑︁
𝑘≠𝑛

x𝑛 − x𝑘

|x𝑛 − x𝑘 |3
.

If the crystal is at equilibrium and zero temperature, then
the average force over one RF period should be zero:

0 = 𝑓

∫ 1/ 𝑓

0
F𝑛 d𝑡 = 𝑓

∫ 1/ 𝑓

0
Ftrap
𝑛 + Fsc

𝑛 d𝑡 = F̄trap
𝑛 + F̄sc

𝑛 ,

where Ftrap
𝑛 is the force from the trap. Assume that the aver-

aged effect of the DC longitudinal and RF transverse elec-
trostatic focussing is a harmonic potential in each axis:

𝑉̄ trap = 𝑘̄𝑥𝑥
2 + 𝑘̄𝑦𝑦

2 + 𝑘̄𝑧𝑧
2 ⇒ 𝐸̄

trap
𝑖

= −2𝑘̄𝑖𝑥𝑖
⇒ 𝐹̄

trap
𝑛,𝑖

= −2𝑞𝑘̄𝑖𝑥𝑛,𝑖 .

Combining with the previous result means the time-averaged
space charge force is linear in space:

𝐹̄sc
𝑛,𝑖 = −𝐹̄ trap

𝑛,𝑖
= 2𝑞𝑘̄𝑖𝑥𝑛,𝑖 .

Now consider a distribution of ions that is uniformly
scaled by a time dependent factor x𝑛 = 𝛼(𝑡)x0

𝑛. The
space charge force is reduced by the inverse square law
Fsc
𝑛 = Fsc,0

𝑛 /𝛼2, so if the x0
𝑛 distribution was the Coulomb

crystal at equilibrium,

𝐹̄sc
𝑛,𝑖 =

𝐹̄
sc,0
𝑛,𝑖

𝛼2 =
2𝑞𝑘̄0

𝑖
𝑥0
𝑛,𝑖

𝛼2 .

Here, 𝑘̄0
𝑖

are the original focussing strengths used in the
trap. Assume that the focussing strengths 𝑘̄𝑖 (𝑡) are now time
dependent. The total force acting on ion 𝑛 is

𝐹̄𝑛,𝑖 = 𝐹̄
trap
𝑛,𝑖

+ 𝐹̄sc
𝑛,𝑖 = −2𝑞𝑘̄𝑖𝑥𝑛,𝑖 +

2𝑞𝑘̄0
𝑖
𝑥0
𝑛,𝑖

𝛼2

= −2𝑞𝑘̄𝑖𝛼𝑥0
𝑛,𝑖 +

2𝑞𝑘̄0
𝑖
𝑥0
𝑛,𝑖

𝛼2 .

Using 𝐹 = 𝑚𝑎, this should be equal to 𝑚 ¥𝑥𝑛,𝑖 = 𝑚 ¥𝛼𝑥0
𝑛,𝑖
.

Equating and dividing both sides by 𝑚𝑥0
𝑛,𝑖

gives

¥𝛼 =
2𝑞
𝑚

(
−𝑘̄𝑖𝛼 +

𝑘̄0
𝑖

𝛼2

)
⇒ 𝑘̄𝑖 =

𝑘̄0
𝑖

𝛼3 − 𝑚

2𝑞
¥𝛼
𝛼
.

This provides the recipe for choosing 𝑘̄𝑖 (𝑡) in order to main-
tain a given uniform scaling 𝛼(𝑡).

SIMULATION
The simulation first prepares a Coulomb crystal of 2000

40Ca+ ions in the trap to its equilibrium temperature of a few
mK, as shown in Fig. 2. The crystal is spherical as dictated
by the chosen electrode strengths.

Figure 2: Coulomb crystal of 2000 40Ca+ ions in the simula-
tion before extraction.

Once the crystal has settled, either uncontrolled or bal-
anced extraction occurs, as described earlier. Some sim-
ulations incorporate amplitude modulation (AM) of the
transverse RF electrode strength to try to satisfy the zero
growth transport condition (for the spherical crystal, equal 𝑘̄
in all three planes). The trap DC bias Δ𝑉 (0) is also varied.

The simulation concludes when the extracted bunch cen-
troid reaches 𝑧 = 20 cm, defining 𝑡 = 𝑡end.

RESULTS
The emittance growth factors in each axis are defined by

𝐺𝑖 = 𝜖𝑖 (𝑡end)/𝜖𝑖 (𝑡extract), where 𝜖 is the normalised RMS
emittance. Fig. 3 shows how the growth varies as a function
of DC bias for uncontrolled extraction. Using AM to main-
tain equal focussing in all planes generally reduces growth,
particularly 𝐺𝑧 . Note that 𝑢tr amplitude was not allowed to
exceed the trap value, to prevent large values when the bunch
is far away. Uncontrolled extraction has a sudden change in
𝑘𝑧 at 𝑡extract, leading to a discontinuity in the AM and phase-
dependent dynamics, appearing as ‘noise’ on the graphs as
the extraction RF phase is pseudo-random. The lowest 6D
emittance growth 𝐺𝑥𝐺𝑦𝐺𝑧 is obtained at Δ𝑉 (0) = 18 V in
both cases, with 𝐺𝑥,𝑦,𝑧 = (2.12, 1.88, 11.08) for constant
𝑢tr and (1.19, 1.07, 2.39) with AM.



Figure 3: Emittance growth factors for the ‘uncontrolled’
extraction method, with and without AM modulation of 𝑢tr.

Figure 4: Emittance growth factors for the ‘balanced’ ex-
traction method, with and without AM modulation of 𝑢tr.

Figure 4 shows the emittance growth for balanced extrac-
tion. This improves greatly over uncontrolled extraction in
almost all cases. Adding AM improves𝐺𝑧 but has a marginal
effect on transverse growth, sometimes making it worse. The
lowest 6D emittance growth is obtained at Δ𝑉 (0) = 75 V
in both cases, with 𝐺𝑥,𝑦,𝑧 = (1.10, 1.02, 1.74) for constant
𝑢tr and (1.17, 1.62, 1.67) with AM, which is actually worse
than the constant case or the uncontrolled extraction AM
case. It seems there is another mechanism for longitudinal
growth that is not corrected by AM.

Figure 5: Bunch size and emittance during balanced extrac-
tion with optimal DC bias and no 𝑢tr modulation.

The bunch size evolution of the best case so far is plotted in
Fig. 5 as a function of longitudinal position. Large emittance
oscillations are seen near the trap from the nonlinear RF field,
which also slightly affects the transverse bunch sizes.

Figure 6: Bunch size and emittance during balanced extrac-
tion with unlimited 𝑢tr modulation and Δ𝑉 (0) = 15 V.

An example of successful AM is shown in Fig. 6, where
the bunch remains near-spherical. Maintaining this required
removing the 𝑢tr limit, so the RF becomes very strong to
affect the bunch far from the electrodes. The emittance
continues to be affected by the RF with significant growth.
A lower DC bias is used here because higher values make
𝑘𝑧 negative at some locations in the potential leaving the
trap. This cannot be compensated with AM, since equal
alternating gradients always focus.

Figure 7: Emittance growth factors with balanced extraction,
𝑢lg set to 0.00072Δ𝑉 (0) and 𝑢tr set to maintain a spherical
Coulomb crystal (no 𝑢tr modulation).

If the ratio between Δ𝑉 (0) and 𝑢lg is maintained, then
increasing them both will extract more quickly through the
same shaped non-linear longitudinal field. Figure 7 shows
the emittance growth obtained this way over a wide range
of voltages. For the highest voltages, the phase advance in
the ion trap becomes high (at the fixed 2 MHz frequency),
leading to badly matched transverse dynamics. The lowest
6D emittance growth in this paper (63%) is obtained here at
Δ𝑉 (0) = 1500 V, with 𝐺𝑥,𝑦,𝑧 = (1.09, 1.12, 1.33).
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