Cβ Halbach Magnet QF and BD Prototypes: Unshimmed Results

From the BNL rotating coil
Thanks to: John Cintorino, Animesh
Jain, George Mahler

Magnets BD#2 and BD#3

Magnet QF#1

Design Development

- 3D printed plastic put inside Al tube to prevent warpage (only use plastic for "difficult" shapes)
- Blocks are self-supporting once all 16 are jammed in place
 - Inner metal parts were made for safety but turns out are not needed
 - We will put shim holders there instead

Unshimmed BD#2,3 Harmonics

C-beta Halbach type BD magnet #2 PMQ_0302 (1-Jun-2016)

Field harmonics are in "units" of 10^{-4} of the *quadrupole field* at a reference radius of 10 mm.

	1-Jun-2016	1-Jun-2016	
Quantity	PMQ_0302 Run 2	PMQ_0303 Run 1	
Integrated Gradient (T)	-1.1825	-1.1806	

Integrated Gradient (T)	-1.1825	-1.1806		
Normal Dipole	19704.4	19704.3		
Normal Quadrupole	-10000.0	-10000.0		
Normal Sextupole	14.8	17.5		
Normal Octupole	11.2	5.6		
Normal Decapole	0.5	-0.6		
Normal Dodecapole	-1.6	0.0		
Normal 14-pole	0.1	-0.1		
Normal 16-pole	0.0	0.0		
Normal 18-pole	0.0	0.0		
Normal 20-pole	0.0	0.0		
Normal 22-pole	0.0	0.0		
Normal 24-pole	0.0	0.0		
Normal 26-pole	0.0	0.0		
Normal 28-pole	0.0	0.0		

0.0

	1-Jun-2016	1-Jun-2016	
Quantity	PMQ_0302 Run 2	PMQ_0303 Run 1	
Integ. Dipole (T.m)	0.023299	0.023264	
Skew Dipole	0.00	-0.04	
Skew Quadrupole	0.00	0.04	
Skew Sextupole	6.32	6.60	
Skew Octupole	-9.95	-11.26	
Skew Decapole	3.43	1.38	
Skew Dodecapole	-0.02	0.00	
Skew 14-pole	0.16	-0.23	
Skew 16-pole	0.03	0.03	
Skew 18-pole	-0.02	0.02	
Skew 20-pole	0.01	0.00	
Skew 22-pole	0.00	0.00	
Skew 24-pole	0.00	0.00	
Skew 26-pole	0.00	0.00	
Skew 28-pole	0.00	0.00	
Skew 30-pole	0.00	0.00	

1-Jun-2016

1-Jun-2016

Normal 30-pole

0.0

Unshimmed QF#1 Harmonics

C-beta Halbach type QF magnet #1 PMQ_0501 (2-Jun-2016)

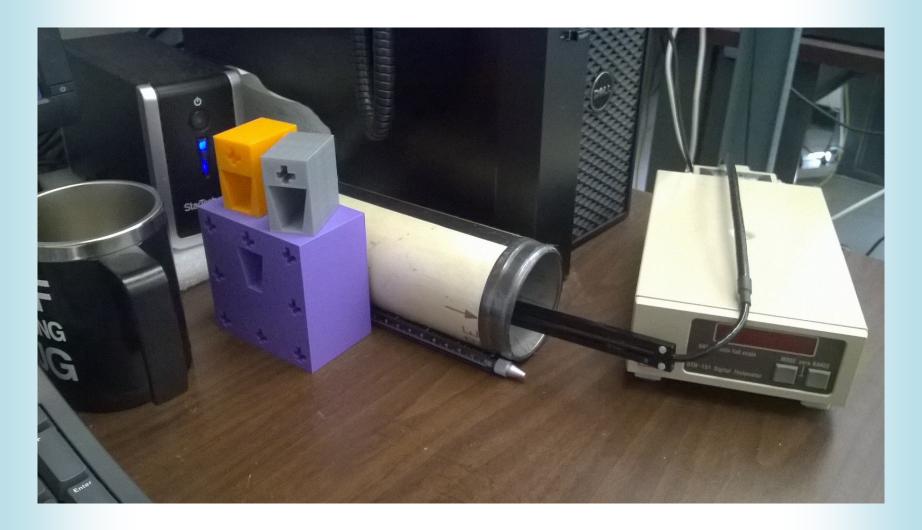
Field harmonics are in "units" of 10⁻⁴ of the quadrupole field

Reference radius used is 25 mm

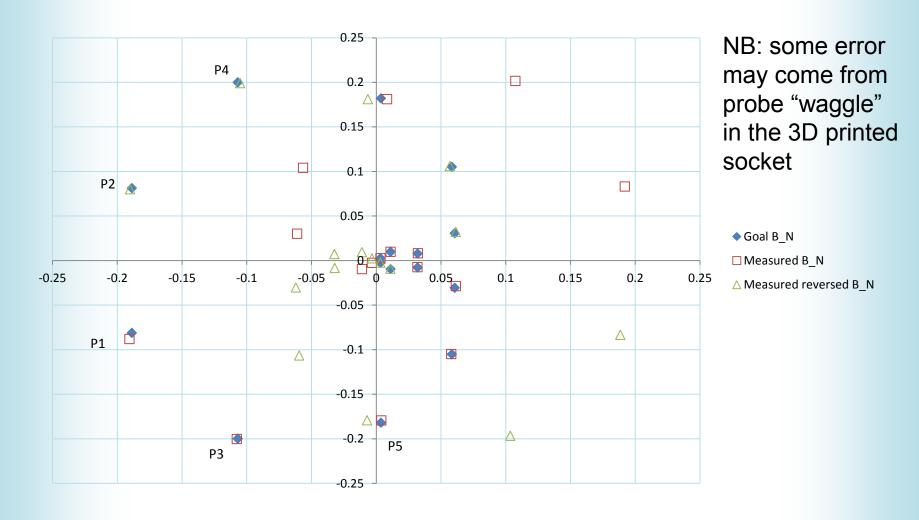
2-Jun-2016

Quantity	PMQ_0501 Run 2
Integrated Gradient (T)	1.3579
Normal Dipole	
Normal Quadrupole	10000.0
Normal Sextupole	-6.9
Normal Octupole	12.5
Normal Decapole	-1.7
Normal Dodecapole	-2.6
Normal 14-pole	2.1
Normal 16-pole	-5.6
Normal 18-pole	-3.5
Normal 20-pole	0.5
Normal 22-pole	1.0
Normal 24-pole	0.3
Normal 26-pole	0.2
Normal 28-pole	0.0
Normal 30-pole	-0.1

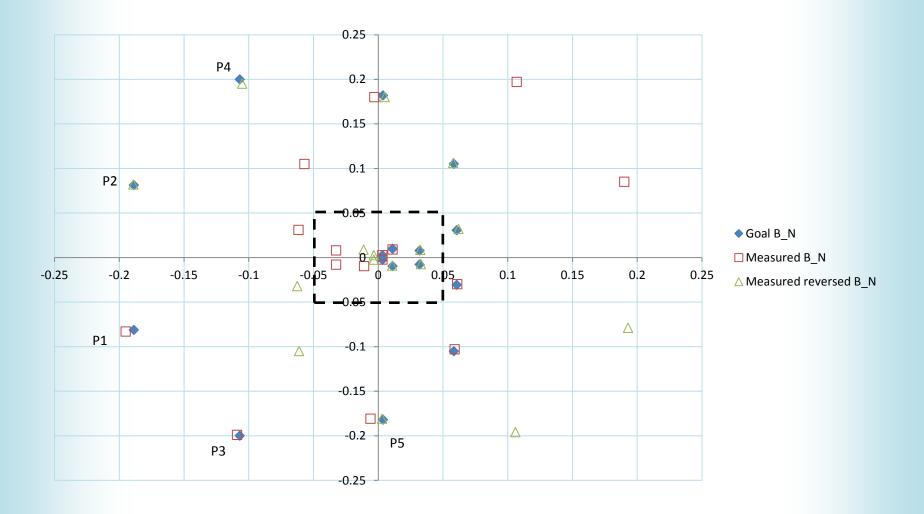
2-Jun-2016

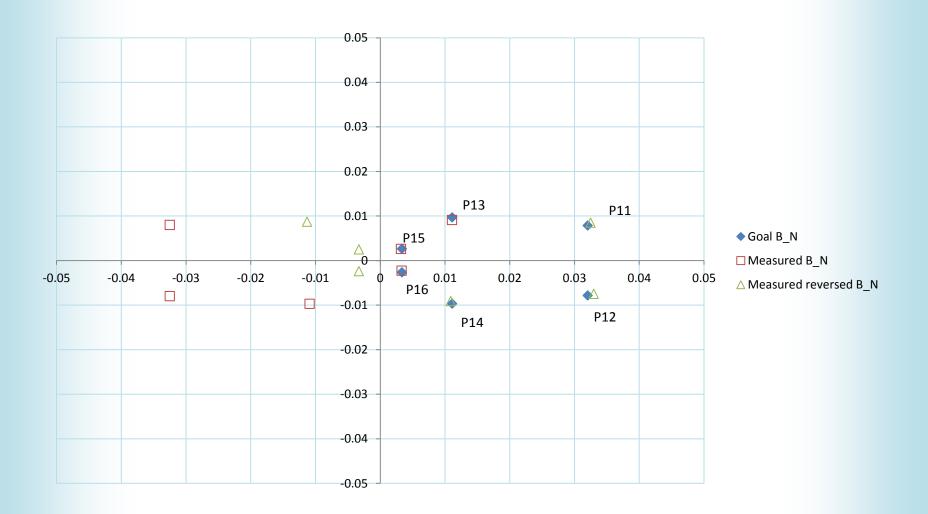

Quantity	PMQ_0501 Run 2		
Field anlge (mr)			
Skew Dipole			
Skew Quadrupole			
Skew Sextupole	12.66		
Skew Octupole	21.22		
Skew Decapole	-15.00		
Skew Dodecapole	19.33		
Skew 14-pole	10.01		
Skew 16-pole	-2.51		
Skew 18-pole	4.07		
Skew 20-pole	1.12		
Skew 22-pole	2.05		
Skew 24-pole	-0.95		
Skew 26-pole	0.43		
Skew 28-pole	0.29		
Skew 30-pole	-0.10		

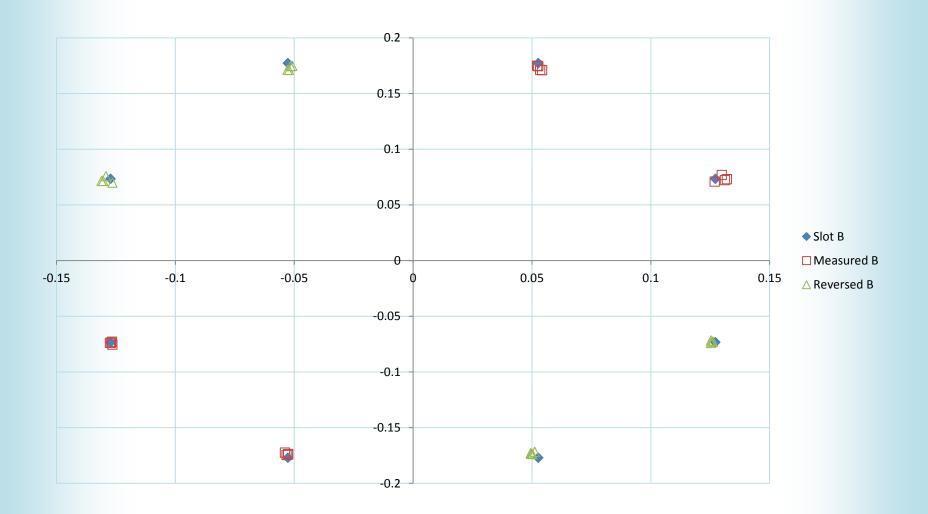
Field Strength vs. Spec


Magnet	Length (nominal)		Integral Quad			•	Spec. Quad	Dipole error	Quad error
BD2	0.06186	0.023299	-1.18245	0.37665	-19.115	-0.37679	19.11912	-0.036%	-0.021%
BD3	0.06186	0.023264	-1.18063	0.37607	-19.0857	-0.37679	19.11912	-0.190%	-0.175%
QF1	0.057441		1.357912		23.64004		-23.6236		0.069%

- Note the sign error
 - Yes, I did put the Hall probe in the wrong way around when I tested the blocks
 - Some blocks were labelled at the wrong end, some labels were swapped, so had to test to get orientation
- Fortunately can flip magnets end-over-end


XY Point Field Test Equipment


BD#2 Point Fields vs. PM2D Model


BD#3 Point Fields vs. PM2D Model

BD#3 Point Fields Zoom

QF#1 Point Fields vs. PM2D Model

Higher Harmonic Figure of Merit

Quadrature sum of units (normal and skew)
 from sextupole up (10000 units = main quad)

$$\sqrt{\sum_{n=3}^{15} a_n^2 + b_n^2}$$

- Depends on reference radius
 - Small radius: sextupole is dominant
 - Large radius: higher order pole contributions increase rapidly

All Unshimmed Figures of Merit

Series	Magnet	Material	Bore radius	FOM with R = 10mm	20mm	25mm	FOM at R = 53% bore	53% bore =
Cbeta Halbach prototypes	BD2	NdFeB	30.70mm	22.29	78.56	203.39	51.00	16.27mm
	BD3	NdFeB	30.70mm	22.60	65.14	170.63	45.69	16.27mm
	QF1	NdFeB	37.20mm	7.08	22.82	40.04	22.12	19.72mm
eRHIC Halbach shim-test quad	5A	SmCo	22.52mm	29.61*	529.80(??)	N/A	39.90*	11.94mm
Cbeta iron- poled prototype	Qd	NdFeB+Fe	23.00mm	16.55	60.27	N/A	21.87	12.19mm

Red = extrapolated beyond coil radius, less accurate

Blue = original coil measurement radius

* This magnet was successfully shimmed down to FOM 1.94 at R = 10mm, or 3.06 at R = 53% bore

Conclusion

- The multipole content of Cbeta Halbach prototypes is similar to the shim test magnet
 - Can expect similar (good) shimming results
 - As described in previous talks, few e-4 level harmonics
 - BD is somewhat worse (2-3x) than QF
 - QF is roughly as good as Holger's first iron Qd
 - Both being unshimmed first assemblies
- Strength errors are all <0.2%, well within corrector range