

Benchmarking and Simulating the CBETA FFAG Arc Cell

Muon1 Simulations Lattice Design Stephen Brooks Scott Berg

CBETA FFAG Arc Cell Lattice

Table 2.6.1: Hard edge arc cell design parameters.

Injection Total Energy (MeV)	(3
Maximum Total Energy (MeV)	15	50
Linac Passes	4	1
Reference Radius (m)	5.099439	
L_{DF} (mm)	120	
$L_{FD} (\mathrm{mm})$	70	
α	F	D
$L_{Q\alpha} \ (\mathrm{mm})$	133	122
$x_{\alpha} \ (\mathrm{mm})$	-7.182	+20.132
Gradient (T/m)	+10.621	-10.017

Table 2.6.2: Horizontal displacements for the real magnets, determined using field maps.

$x_F (\mathrm{mm})$	-4.089
$x_D \ (\mathrm{mm})$	+17.313

Code Comparison

Muon1 (by Stephen Brooks)

- Uses Cartesian global-frame coordinates
- Tracks in t
- Runge-Kutta 4th order
- Based on F=q(E+v×B) (no Hamiltonians)
- Fixed timestep of 10ps (I sometimes lower this to 5ps for CBETA, very little difference)
- Fieldmaps are interpolated trilinearly (occasionally leads to rough edges when finding tunes)

"Scott's Code" (developed recently for CBETA)

- Uses cylindrical polar coordinates (r,theta,y)
- Tracks in theta
- [Not sure what integrator]
- Based on Hamiltonians
- Fieldmaps are smoothed and particles are tracked through a highly-differentiable spline fit

Frame-rate: AUTO (1 /1) Particle size: AUTO (5mm) Results database: O bytes (0 bytes since last se

Muon1 Simulation

Matc

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Cbeta/Cell_Iron_2016-05-12

MatchEnd

Frame-rate: AUTO (1 / 1) Particle size: AUTO (5mm) Results database: O bytes (0 bytes since last send)

View: AUTO, Y is up

Muon1 Simulation

Cell Tunes from Muon1

Cell Path Length and TOF

Cell Tunes from Both Codes

Total Energy (MeV)	Muon1 Cell Tune X	Muon1 Cell Tune Y	Scott Cell Tune X	Scott Cell Tune Y
42	0.360041	0.286975		
78	0.177298	0.119886		
114	0.125858	0.0638703		
150	0.104551	0.0390379		

Only the first turn (42MeV) is in the region susceptible to strong resonances. The rest of the turns are in the pseudo-continuous phase advance regime.

The low tune is always the Y tune at the highest energy. Going higher makes it difficult to find a lattice with practical field strengths. Going lower makes optics sensitive to focussing errors and not enough phase advance for "adiabatic" transition from FFAG arc to straight.

Scott Berg's CBETA FFAG Arc Cell (and Holger's Fieldmaps) Imported Into Muon1

File "Cbeta/Cell_Iron_2016-05-12" {Scott's 150MeV lattice from "160507-JSBerg" folder, using Holger's fieldmaps from "160512-FieldMap" subfolder}		<pre>#scalboth = 1; dispboth = 0; #scalF = 1; scalD = 1; #dispF = 0; dispD = 0;</pre> No scaling or displacement for final fieldmap version		
<pre>#h = +1.9610000439244032e-01; #R=1.0/h; #lqf = +1.330000000000000e-01; #lqd = +1.2200000000000000e-01; #lfd = +7.000000000000000e-02; #ldf = +1.20000000000000000e-01;</pre>	Scott's parameters h is inverse radius	{TrilinearFieldMap File Strength Xrel MirrorY=1} FMboth Cbeta\Iron_2016-05-12\160308a-38- 48_5deg150MeVCombQdOnQfOn_polar.txt #scalboth*-1# #dispboth- R# FMF Cbeta\Iron_2016-05-12\160308a-38- 48_5deg150MeVSepQfOn_polar.txt #scalF*-1# #dispF-R# FMD Cbeta\Iron_2016-05-12\160308a-38- 48_5deg150MeVSepQdOn_polar.txt #scalD*-1# #dispD-R#		
#thqf=2*asin(0.5*lqf/R); #thqd=2*asin(0.5*lqd/R); #thfd=2*asin(0.5*lfd/R);	Convert chord lengths to arc lengths	CellFM: HDF,QF,HFD,FMboth,HFD,QD,HDF; CellFMsep: HDF,QF,HFD,FMF,FMD,HFD,QD,HDF;		DF; Cell definitions QD,HDF;
#thdf=2*asin(0.5*ldf/R); {Drift Length Angle} DF #R*thdf# #thdf*-1# QF #R*thqf# #thqf*-1# FD #R*thfd# #thfd*-1# QD #R*thqd# #thqd*-1# HDF #DF.Length/2# #DF.Angle/2#	Define empty circular arc	#Emin = +4.2000000000000000000000000000000000000	e+07;)e+08;	Number of passes Units, total E> k.e.
	elements (radius R) for layout reference Half-elements	#EmasseV=510998.928; {MatchScan Estart Egoal Estep Species=Electron AllowUnstable=1} Match #Emax-EmasseV#eV #Emin-EmasseV#eV #(Emax-Emin)/(n- 1)#eV		
HFD #FD.Length/2# #FD.Angle/2#		MatchFine #Match.Estart# #Match.Egoal# 1MeV		
		{Match-Aperture} MatchEnd CellFM,Match,CellFM,MatchEnd	I,CellFM:	Place 3 cells to allow
				ininge neid overlaps

Focus: Aligning the Fieldmaps

{TrilinearFieldMap File Strength Xrel MirrorY=1} FMboth Cbeta\Iron_2016-05-12\160308a-38-48_5deg150MeVCombQdOnQfOn_polar.txt #scalboth*-1# #dispboth-R# FMF Cbeta\Iron_2016-05-12\160308a-38-48_5deg150MeVSepQfOn_polar.txt #scalF*-1# #dispF-R# FMD Cbeta\Iron_2016-05-12\160308a-38-48_5deg150MeVSepQdOn_polar.txt #scalD*-1# #dispD-R#

3 fieldmaps with long file names Field magnitude is inverted due to difference in curvature direction (Scott vs. reality) Relative position in local X is "-R", i.e. origin is centre of radius R circle Mirrored in Y to give both positive and negative Y

CellFM: HDF,QF,HFD,FMboth,HFD,QD,HDF; CellFMsep: HDF,QF,HFD,FMF,FMD,HFD,QD,HDF;

> For each version of the cell (combined or separate fieldmaps), the maps are placed at the centre of the F-to-D (short) drift The cell entrance/exit is the centre of the D-to-F (long) drift

Resonance Plot

Plot of aperture (transmission of v.large 1cm-radius beam) as a function of two focussing strengths

100% 99.9% 99% 90% 75% 50% 25% 24% 10% 5% 2% 1% 0.5% 0.1%0.09% 0.01%

For lowest-energy pass, highest tunes.

Working point circled: (Qx,Qy) = (0.360,0.287)

(x,y) = (30.625,18.125) score = 0.288

24_Verysmoothpipe2016-02-25fixedstraight

Resonance Plot

/smoothpipe2016-02-25

(x,y) = (30.625,18.125) score = <u>0.2892</u>

before adjustment to straight drift lengths

99.9% 99% 75% 50% 25% 24% 10% 5% 2% 1% 0.5% 0.1% 0.09% 0.01%

Resonance band features broadened because straight section has different tunes to arcs. Can fix by adjusting straight section drift lengths.

Conclusions

- The CBETA FFAG has been simulated in Scott's code, Muon1 and BMAD
- These codes have very different internal operation yet we get consistent results
- Arc-to-straight match has been optimised for an old lattice, currently being optimised for the newest version