Scaling VFFAG eRHIC Design

Progress Report

I. Beam Distribution Model

Input from Beam-Beam Simulation

- To check dynamic aperture, want a "worst case" beam with tails
- Received a distribution from Yue Hao
 - Electrons immediately after interaction at 10GeV
- Loss required <1e-6 so long tails are important
 - Define model distribution not discrete particles
 - Fit model to Yue's beam distribution

y-y' with Linear Histograms

y-y' with Log Histograms

Distribution Model

- y' (and x') tails on log plots look like e^-x
- Turns out in a 4D (x,x',y,y') distribution that's not a very natural tail to have
- Cumulative F(Z) = (1-e^-Z)^4 mostly works
 Z is normalised amplitude (expressed in sigmas)

Needed to scale to 0.85Z to get good fit in tails

 Idea is phase-independent distribution that is "at least as bad" as real one in all projections

Distribution Model Comparison

Comparison Without 0.85 Scaling

Beam Size in Real Phase Space

- sigma_x = 13.6um, sigma_x' = 72.9mrad
 At IR! So beta_RMS = 18.6cm
- em_geom_RMS = 0.99 nm.rad (at 10GeV)
 em_norm_RMS = 19.4 um.rad
- Scaling to beta = 5m and 1.2GeV gives
 - $sigma_x = 203um$
 - Tails were approaching 10 sigma
 - So [dynamic] aperture needs to be +/- 2mm: large!

x-y Example VFFAG Beam @1.2GeV

Zoom 20x to see Beam at IR

II. Dynamic Aperture k Scaling

Scaling VFFAG Design from April

- k=100m^-1 (reminder: B_y = B_0 e^ky)
 21.2mm orbit offset, B_0=0.0529T, B_{10GeV}=0.441T
- Used triplet "2nd stability region" lattice
- Tracking indicated dynamic aperture too small
- F=1.23m, D=1.3m (2cm fringe), O=2.507m
 - FDFO lattice cell = 6.267m
 - 60% packing factor
 - Circumference factor = 3.241

2nd Stability Region Optics

How to Scale k?

- Orbit spacing scales with 1/k
- Magnet/drift lengths with 1/sqrt(k)

– 2k with same magnet L gives focal L/2

- But 2k with magnet L/sqrt(2) gives focal L/sqrt(2)
- Beta is focal length so also 1/sqrt(k)
- Fringe field length with 1/k

Because magnet height scales with 1/k

• Dipole fields remain the same

Dynamic Aperture Simulation

- Most difficult turn is 1.2GeV: largest beam
 Higher order poles smaller for smaller beams
- Disrupted beam is harder than original
- Do 2 turns of disrupted beam at 1.2GeV as proxy for whole 1.2->10->1.2 cycle

– C_eRHIC = 3843.16m, 2 turns ~ 7.7km

10000 particles for now

1.2-10GeV orbit excursion = 2.12/k

Transmission as k is Decreased

Better but Not Good Enough!

Loss (log scale)

III. Stability Diagrams

Necktie FDF Triplet Stability Plot

Lattice Variables & Constraints

- FDFO triplet has 3 lengths and 2 magnet strengths (the B_0 for F and D; k is fixed)
- Packing factor 60% fixes Length_O
- Tunnel bending radius 378.26m fixes overall field magnitude

– The previous "necktie" plots didn't enforce this!

 Leaves 5-2=3 free parameters: L_F, L_D and F/D strength ratio

IV. eRHIC Energy Limit Formula

"Maximum GeV" for a Lattice

- Reference case: 60% packing factor, 0.43*2/3
 = 0.2867T, Eref=20GeV
- Synchrotron power P proportional to E^2B^2
- <P> = E^2<B^2>
- So Emax^2<((Emax/E)B)^2> = Eref^2<Bref^2>
- (Emax^4/E^2)<B^2> = Eref^2<Bref^2>
- Emax = sqrt(E Eref Brmsref/Brms)
 - = Eref sqrt(E/Brms)/sqrt(Eref/Brmsref)

Maximum GeV Examples

- The non-FFAG eRHIC with separate beamlines (no reverse bend) has Emax=20GeV and C=1
- Having a circumference factor multiplies up the required fields (Brms) by C for a given energy, so E/Brms is divided by C
- Square root means Emax is divided by sqrt(C)
- Existing C=3.241 case gets to 11.1GeV

V. Future Work

Where to go next

 Try to find scaling VFFAG at lower energy (~5GeV) but with enough dynamic aperture

Perhaps alignment error studies too

Acts as a back-stop

 A few places remain to optimise the scaling VFFAG but since the tunes do not matter a non-scaling machine has more freedom