Scaling VFFAG eRHIC Design

Progress Report

I. Beam Distribution Model

Input from Beam-Beam Simulation

- To check dynamic aperture, want a "worst case" beam with tails
- Received a distribution from Yue Hao
- Electrons immediately after interaction at 10 GeV
- Loss required <1e-6 so long tails are important
- Define model distribution not discrete particles
- Fit model to Yue’s beam distribution

$y-y^{\prime}$ with Linear Histograms

$y-y^{\prime}$ with Log Histograms

Distribution Model

- y^{\prime} (and x^{\prime}) tails on log plots look like $e^{\wedge}-x$
- Turns out in a 4D ($x, x^{\prime}, y, y^{\prime}$) distribution that's not a very natural tail to have
- Cumulative $F(Z)=\left(1-e^{\wedge}-Z\right)^{\wedge} 4$ mostly works
-Z is normalised amplitude (expressed in sigmas)
- Needed to scale to $0.85 Z$ to get good fit in tails
- Idea is phase-independent distribution that is "at least as bad" as real one in all projections

Distribution Model Comparison

Comparison Without 0.85 Scaling

Beam Size in Real Phase Space

- sigma_x = 13.6um, sigma_x' $=72.9 \mathrm{mrad}$ - At IR! So beta_RMS $=18.6 \mathrm{~cm}$
- em_geom_RMS $=0.99$ nm.rad (at 10 GeV) - em_norm_RMS = 19.4 um.rad
- Scaling to beta $=5 \mathrm{~m}$ and 1.2 GeV gives
- sigma_x = 203um
- Tails were approaching 10 sigma
- So [dynamic] aperture needs to be +/- 2 mm : large!

x-y Example VFFAG Beam @1.2GeV

Zoom 20x to see Beam at IR

II. Dynamic Aperture k Scaling

Scaling VFFAG Design from April

- $k=100 m^{\wedge}-1$ (reminder: B_y $=B _0 e^{\wedge} k y$)
-21.2 mm orbit offset, $\mathrm{B} _0=0.0529 \mathrm{~T}, \mathrm{~B}_{10 \mathrm{Gev}}=0.441 \mathrm{~T}$
- Used triplet " 2 nd stability region" lattice
- Tracking indicated dynamic aperture too small
- $F=1.23 \mathrm{~m}, \mathrm{D}=1.3 \mathrm{~m}$ (2 cm fringe), $\mathrm{O}=2.507 \mathrm{~m}$
- FDFO lattice cell $=6.267 \mathrm{~m}$
- 60\% packing factor
- Circumference factor $=3.241$

$2^{\text {nd }}$ Stability Region Optics

How to Scale k?

- Orbit spacing scales with $1 / k$
- Magnet/drift lengths with $1 /$ sqrt(k)
- $2 k$ with same magnet L gives focal $L / 2$
- But 2 k with magnet $\mathrm{L} / \mathrm{sqrt}(2)$ gives focal $\mathrm{L} / \mathrm{sqrt}(2)$
- Beta is focal length so also $1 /$ sqrt(k)
- Fringe field length with $1 / k$
- Because magnet height scales with $1 / k$
- Dipole fields remain the same

Dynamic Aperture Simulation

- Most difficult turn is 1.2 GeV : largest beam - Higher order poles smaller for smaller beams
- Disrupted beam is harder than original
- Do 2 turns of disrupted beam at 1.2 GeV as proxy for whole 1.2->10->1.2 cycle
- C_eRHIC $=3843.16 \mathrm{~m}, 2$ turns $\sim 7.7 \mathrm{~km}$
- 10000 particles for now
- $1.2-10 \mathrm{GeV}$ orbit excursion $=2.12 / \mathrm{k}$

Transmission as k is Decreased

Better but Not Good Enough!

III. Stability Diagrams

Necktie FDF Triplet Stability Plot

Lattice Variables \& Constraints

- FDFO triplet has 3 lengths and 2 magnet strengths (the B_O for F and D; k is fixed)
- Packing factor 60% fixes Length_O
- Tunnel bending radius 378.26 m fixes overall field magnitude
- The previous "necktie" plots didn't enforce this!
- Leaves 5-2=3 free parameters: L_F, L_D and F/D strength ratio

$(2,1)$ beta~20-50m, 10-11GeV
$(3,1)$
beta~10000m!
16 GeV

DFD (2,2)
beta<5m??
11 GeV
DFD (2,1)
Beta~80-200m
13-14GeV

IV. eRHIC Energy Limit Formula

"Maximum GeV" for a Lattice

- Reference case: 60% packing factor, $0.43 * 2 / 3$
= 0.2867T, Eref=20GeV
- Synchrotron power P proportional to $\mathrm{E}^{\wedge} 2 \mathrm{~B}^{\wedge} 2$
- <P> = E^2<B^2>
- So Emax^2<((Emax/E)B)^2> = Eref^2<Bref^2>
- (Emax^4/E^2)<B^2> = Eref^2<Bref^2>
- Emax = sqrt(E Eref Brmsref/Brms) - = Eref sqrt(E/Brms)/sqrt(Eref/Brmsref)

Maximum GeV Examples

- The non-FFAG eRHIC with separate beamlines (no reverse bend) has Emax $=20 \mathrm{GeV}$ and $\mathrm{C}=1$
- Having a circumference factor multiplies up the required fields (Brms) by C for a given energy, so $\mathrm{E} / \mathrm{Brms}$ is divided by C
- Square root means Emax is divided by sqrt(C)
- Existing C=3.241 case gets to 11.1 GeV

V. Future Work

Where to go next

- Try to find scaling VFFAG at lower energy ($\sim 5 \mathrm{GeV}$) but with enough dynamic aperture
- Perhaps alignment error studies too
- Acts as a back-stop
- A few places remain to optimise the scaling VFFAG but since the tunes do not matter a non-scaling machine has more freedom

