Arc to Straight Matching

In both eRHIC FFAG rings

What is the Straight?

- The straight cell is the same as the arc cell but with the following set to zero:
 - Displacements from reference curve
 - "Dipole component" if magnet was combined function
 - Bends in reference curve
 - The magnets have no real bends, they are rectangular
- These are positioning issues only, so actually the straight cell consists of the same 'part numbers' as the arc!

Straight Cell Optics

 Non-offset quadrupoles so all matched beams go straight down the middle

 Very little synchrotron radiation Max β difference β_v 11.66 vs. 11.64m 0.45 14 30 Max tune difference 0.4 12 \mathbf{X} ₩ 0.000011 0.35 10 0.3 Qx betax 8 0.25 Qy betay 0.2 6 X betax straight ** 0.15 × betay straight \times Qy straight 4 0.1 2 0.05 0 0 5000 10000 15000 25000 5000 10000 20000 25000 0 20000 0 15000 Same "optics" as arc

Straight Cell TOF

Matching Concept

- FFAG matching analogous to trying to move a bunch of pendulums of different lengths from one place to another with minimum disturbance
 - One pendulum for each orbit
 - 1/period ~ tune
 - Sensitive to accelerations (by relativity!)
- Doing it adiabatically will always work

Non-adiabatic solutions hard for many pendulums

Matching Method

- Used 17 special matching cells (~44m)
- Bend angles and quad offsets in each cell are arc cell's values multiplied by a function w(u)
 - u "coordinate" = cell number(1 to 17)/18
 - $u \le 0$ in straight, $u \ge 1$ in arc
 - Want w(0)=0 and w(1)=1 to avoid discontinuities
- Simplest choice: w(u)=u (linear)

– Problem: w'' is effectively infinite at u=0 and 1

Linear Ramp of Both Rings

Something Smoother

• The cubic function $w(u) = 3u^2 - 2u^3$

-w(0)=0, w(1)=1, w'(0)=w'(1)=0

- Makes a nice ramp with w" finite

Cubic Ramp of Both Rings

Method Used for MAC-10 Match

 Sometimes a linear combination is better than either of the above choices

 $-w(u) = (1 - k) u + k (3u^2 - 2u^3)$

Optimised Ramp of Both Rings

Position Errors in Straight

Full Ring

Position Errors After Whole Turn

To-do List Update (stars = difficulty)

- Find vertical gap size required for synchrotron radiation **
 Have asked Oleg Tchoubar about this but he had vacation last week
 - Feeds into magnet LDRD parameters
- Arc-to-straight matching sections **
 Similar: detector bypasses
- Splitter/combiner at both ends of linac ***
- 10/15/21GeV septum ****

With possible optical bumping etc.

The Tunnel: Working Assumptions?

- Will the proton ring in eRHIC be the blue ring, or an "inner" ring without the DX magnets?
 - This determines in-tunnel position of eRHIC rings
 - Which determines the splitter exit coordinates
- Nick Tsoupas suggests horizontally stacked FFAGs would be easier than vertically stacked
 - Path length increase $(2\pi\Delta r)$ should then also be compensated in the splitter, if possible \bigcirc
 - One cell would be very slightly longer for 'stacking'

Scope of February Design Report

- Vadim will/already has clarified ^(C)
- Seems not too hazardous
 - Arcs + straights + matching + bypasses = 2 pages
 - Splitter in another section

January 13, 2014