Arc to Straight Matching

In both eRHIC FFAG rings

What is the Straight?

- The straight cell is the same as the arc cell but with the following set to zero:
- Displacements from reference curve
- "Dipole component" if magnet was combined function
- Bends in reference curve
- The magnets have no real bends, they are rectangular
- These are positioning issues only, so actually the straight cell consists of the same 'part numbers' as the arc!

Straight Cell Optics

- Non-offset quadrupoles so all matched beams go straight down the middle
- Very little synchrotron radiation

Max β difference β_{y} 11.66 vs. 11.64 m

Same "optics" as arc

Straight Cell TOF

Matching Concept

- FFAG matching analogous to trying to move a bunch of pendulums of different lengths from one place to another with minimum disturbance
- One pendulum for each orbit
- 1/period ~ tune
- Sensitive to accelerations (by relativity!)

- Doing it adiabatically will always work
- Non-adiabatic solutions hard for many pendulums

Matching Method

- Used 17 special matching cells ($\sim 44 m$)
- Bend angles and quad offsets in each cell are arc cell's values multiplied by a function w(u)
- u "coordinate" = cell number(1 to 17)/18
- $\mathrm{u} \leq 0$ in straight, $\mathrm{u} \geq 1$ in arc
- Want $w(0)=0$ and $w(1)=1$ to avoid discontinuities
- Simplest choice: $w(u)=u$ (linear)
- Problem: w" is effectively infinite at $u=0$ and 1

Linear Ramp of Both Rings

Orbits exaggerated 1000 times

Something Smoother

- The cubic function $w(u)=3 u^{2}-2 u^{3}$
$-w(0)=0, w(1)=1, w^{\prime}(0)=w^{\prime}(1)=0$
- Makes a nice ramp with w" finite

Cubic Ramp of Both Rings

Method Used for MAC-10 Match

- Sometimes a linear combination is better than either of the above choices

$$
-w(u)=(1-k) u+k\left(3 u^{2}-2 u^{3}\right)
$$

Optimised Ramp of Both Rings

Position Errors in Straight

Full Ring

Position Errors After Whole Turn

To-do List Update (stars = difficulty)

- Find vertical gap size required for synchrotron radiation $\star \star$ Have asked Oleg Tchoubar about this but he had vacation last week
- Feeds into magnet LDRD parameters
- Arc to-straight matching-sections $\star \star$
- Similar: detector bypasses
- Splitter/combiner at both ends of linac
- $10 / 15 / 21 \mathrm{GeV}$ septum
- With possible optical bumping etc.

The Tunnel: Working Assumptions?

- Will the proton ring in eRHIC be the blue ring, or an "inner" ring without the DX magnets?
- This determines in-tunnel position of eRHIC rings
- Which determines the splitter exit coordinates
- Nick Tsoupas suggests horizontally stacked FFAGs would be easier than vertically stacked
- Path length increase $(2 \pi \Delta r)$ should then also be compensated in the splitter, if possible
- One cell would be very slightly longer for 'stacking'

Scope of February Design Report

- Vadim will/already has clarified ©
- Seems not too hazardous
- Arcs + straights + matching + bypasses $=2$ pages
- Splitter in another section

$$
\begin{aligned}
& D_{x} \xrightarrow{\longrightarrow} \\
& x f \underset{\substack{\delta 20 \\
\delta<0}}{\square \rightarrow \square \square \square} \\
& x=-k s^{2}+\delta D_{x}(\xi) \\
& x^{\prime \prime}=k+\delta D_{x}^{\prime \prime}(s) \\
& -x_{D}=\frac{2 B_{D}}{G_{F}} \delta \\
& B^{2} E^{2} \propto x^{\prime \prime 2}(1+\delta)^{2} \\
& \int B_{d s}^{2} \int\left(k+\delta D_{x}^{\prime \prime}\right)^{2} d s=0 \text { for peindie } \\
& =L k^{2^{c o m p}}+2 k \delta \overbrace{\int_{D_{x}^{n}}^{n} d s} \\
& +\delta^{2} \int D_{x}^{11^{2}} d s
\end{aligned}
$$

\therefore To wimines $\int B^{2} d s$, wиinice $\int D_{x}^{42} d s$ or attrer $\left\langle D_{x}^{112}\right\rangle_{s}$
$f^{2} B^{2} d s$

$$
\Rightarrow(1+\delta)^{2} \int \rho^{2} d s \propto L^{k} k^{2}(1+\delta)^{2}+\underbrace{\delta^{2}(1+\delta)^{2}}_{\geq 0} \int D_{x}^{12} d s
$$

January 13, 2014

