# Matching and Extraction using Muon1 Response Matrix Output

Studies using eRHIC Oct'14 lattice, using double beams for dispersion

#### **eRHIC** Structure

|             | Clock position | FFAG Lattice         | Clock position | FFAG Lattice         |
|-------------|----------------|----------------------|----------------|----------------------|
|             | 2              | Linac                | 8 = PHENIX IR  | Straight + Bypass    |
|             |                | Splitter             |                | Transition           |
|             | 1              | Arc                  | 7              | Arc                  |
|             |                | Transition           |                | Transition           |
|             | 12             | Straight             | 6 = STAR IR    | Straight + Bypass    |
|             |                | Transition           |                | Transition           |
| Extraction? | 11             | Arc                  | 5              | Arc                  |
|             |                | Transition           |                | Transition           |
|             | 10             | Straight + Crossover | 4              | Straight + Crossover |
|             |                | Transition           |                | Transition           |
|             | 9              | Arc                  | 3              | Arc                  |
|             |                | Transition           |                | Splitter             |

### Muon1 Response Output



Any attribute can become a corrector, e.g. adding a ResponseDipole=1e-6 attribute will vary that Dipole by 1e-6 Tesla in the numerical differentiation.

# Extraction Matching x, x' Only

- Uses cells from the FFAG2 straight section
- Goal is x=x'=0 except for one beam where x>0
- Dipole correctors limited to ±0.005T as before

- Corrector program tries to minimise RMS x, x' error subject to corrector strength constraint
- Results presented for allowing varying number of cells' correctors to be used









Particle eize: AUTO (0.134mm) Results datebase: 1 entries, 72 bytes (72 bytes since last send )

# Extracted beam overshoots into higher-field regions.



point need not be the same, e.g. extract at earlier peak. NB: other energies may behave differently.

# Corrector Dipole Fields (T)



## x and x' for Beam Energies

![](_page_9_Figure_1.jpeg)

# x and x' for Beam Energies (zoom)

![](_page_10_Figure_1.jpeg)

## x and x' as a Function of Energy

![](_page_11_Figure_1.jpeg)

# $D_x$ and $D_{x'}$ as a Function of Energy

![](_page_12_Figure_1.jpeg)

## **Extraction Including Dispersion**

- Want gradient of x(E), x'(E) approximately zero around the beam points
- Add another set of beams 50MeV above the original 11
  - With the same goal x, x'
- "Double root" should force x(E), x'(E) to vary quadratically rather than linearly near the beam energies (D<sub>x</sub>, D<sub>x</sub>, approximately zero)

![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_16_Figure_0.jpeg)

![](_page_17_Figure_0.jpeg)

Particle size: AUTD [0134mm] Results database:1 entries,74 bytes [74 bytes since last send

Transverse exaggeration x4096

#### Larger orbit excursion in arc

# Corrector Dipole Fields (T)

![](_page_19_Figure_1.jpeg)

## x and x' as a Function of Energy

![](_page_20_Figure_1.jpeg)

#### Zoom: 19.8GeV beams

![](_page_21_Figure_1.jpeg)

#### Zoom: 14.6GeV beams

![](_page_22_Figure_1.jpeg)

## Zoom: 10.6GeV beams

![](_page_23_Figure_1.jpeg)

#### Zoom: 9.3GeV beams

![](_page_24_Figure_1.jpeg)

## Problem: 7.9GeV beams

![](_page_25_Figure_1.jpeg)

# $D_x$ and $D_{x'}$ as a Function of Energy

![](_page_26_Figure_1.jpeg)

# **Dispersion Using 5\*11 Beams**

- For each beam energy E, use five particles:
  - E(1-δ)
  - E(1-δ/2)
  - E
  - E(1+δ/2)
  - E(1+δ)
- This should force higher-order dispersions to zero in the relevant momentum ranges

## With $\delta p/p=1e-3$

![](_page_28_Figure_1.jpeg)

## With $\delta p/p=1e-4$

![](_page_29_Figure_1.jpeg)

#### Idea #1: two correctors per magnet

- Put different correctors in front and back halves of each magnet, beams will have different phase advances in each
  - Might help if problem is just "lacking in variables"

![](_page_30_Figure_3.jpeg)

#### Idea #1: two correctors per magnet

- Put different correctors in front and back halves of each magnet, beams will have different phase advances in each
  - Might help if problem is just "lacking in variables"

![](_page_31_Figure_3.jpeg)

#### Idea #2: stronger correctors

- What if correctors are lacking in power?
  - 0.05T is achievable with ±2mm magnet offsets

• Or partial shorting of PM blocks with iron shunts

![](_page_32_Figure_4.jpeg)

#### Idea #2: stronger correctors

- What if correctors are lacking in power?
  - 0.05T is achievable with ±2mm magnet offsets
    - Or partial shorting of PM blocks with iron shunts

![](_page_33_Figure_4.jpeg)

| Max Corrector<br>Strength (T) | Cells Needed for<br>Exact Correction |
|-------------------------------|--------------------------------------|
| 0.005                         | 185                                  |
| 0.01                          | 164                                  |
| 0.05                          | 140                                  |

## Future Work

 Extraction point does not have to be merging point for rest of the beams

Only condition is beam well-separated from rest
Could try to find optimal location

- Yue: really only symmetry to un-extraction point is necessary rather than exact merging
- Dejan: what about changing the gradients?
   Introduces constraints (β<sub>x,y</sub>) as well as variables