eRHIC: an Efficient Multi-Pass ERL based on FFAG Return Arcs

On behalf of the eRHIC design team

eRHIC Schematic

Cost Savings for a ~20GeV ERL EIC

Parameter	Non-FFAG Design	FFAG Design	Reduction
Linac energy per turn	3.33 GeV	1.32 GeV	2.52 x
Turns until collision	6	16	$(2.67 \mathrm{x}$ increase)
Beamline loops built	6	2	$3 x$
Synchrotron power loss for I $=20 \mathrm{~mA}$	2.18 MW	9.87 MW	4.5 x increase

- eRHIC is ERL-based to achieve high luminosity
- Electron beam only interacts once so can have an extremely high beam-beam tune shift of ~ 20
- Would have to be kept stable if in a storage ring

FFAG Cell Orbits

- FFAG1 limited by energy range $4-5 x$
- FFAG2 optimised for low synchrotron power

FFAG1
BD, QF, BD, QF

FFAG2
7.9GeV
BD, QF

6.6 GeV
21.2 GeV

Orbits transversely exaggerated x100

* Just one option, there is also a 4+12 turn scheme

FFAG Cells Parameter Tables

Parameter	FFAG1	FFAG2			
Energy range	$1.334-6.622 \mathrm{GeV}$	$7.944-21.164 \mathrm{GeV}$			
Energy ratio	$4.96 \times$	$2.66 \times$			
Number of turns	5	11			
Cell length	1.795 m	3.591 m			
BD, QF lengths	$0.425 \mathrm{~m}, 0.471 \mathrm{~m}$	$1.272 \mathrm{~m}, 1.809 \mathrm{~m}$			
Drift lengths	$45 \mathrm{~cm}, 45 \mathrm{~cm}$	$6 \mathrm{~cm}, 45 \mathrm{~cm}$			
BD, QF gradients	$25 \mathrm{~T} / \mathrm{m},-25 \mathrm{~T} / \mathrm{m}$	$29.256 \mathrm{~T} / \mathrm{m},-25 \mathrm{~T} / \mathrm{m}$			
Maximum orbit span	16.6 mm	21.5 mm			
Tune per cell range	$0.033-0.408$	$0.034-0.410$			
TOF variation	$31.0 \mathrm{ppm}(6.6 \mathrm{~cm} /$ ring $)$	$38.0 \mathrm{ppm}(8.1 \mathrm{~cm} / \mathrm{ring})$			
Maximum field on orbit	0.266 T	0.416 T			
Synchrotron power loss	$0.34 \mathrm{MW}, \mathrm{I}=50 \mathrm{~mA}$	$9.87 \mathrm{MW}, \mathrm{I}=20 \mathrm{~mA}, 21.2 \mathrm{GeV}$			
June 9, 2015	Stephen Brooks, ERL 2015				$9.48 \mathrm{MW}, \mathrm{I}=50 \mathrm{~mA}, 15.9 \mathrm{GeV}$

eRHIC Tunes per Cell vs. Energy

eRHIC TOF Variation with Energy

eRHIC Synchrotron Power per Turn

eRHIC FFAG Straight Sections

High energy FFAG

Orbits exaggerated transversely x1000

Quadrupole offsets and curvature adiabatically removed over 17 transition cells.

As dipole component disappears, all orbits move to straight centre line with small errors:
$\pm 0.436 \mathrm{~mm}$ in low-energy ring $\pm 0.066 \mathrm{~mm}$ in high-energy ring ...that can be corrected with fine adjustments

eRHIC FFAG Rings in Perspective

Orbits exaggerated transversely $\times 5000$, shape of hexagonal RHIC is evident

Legend:[F11to hide]

Kinetic energy

Detector Bypasses: a Flexible FFAG

Bypass straight

3	9	9	17	17	9	9	3

Normal straight
76 cells

Displacement

3D Bypass Layout in RHIC Tunnel

Extraction Scheme

- Adiabatically expand cells in 5 \& 9 o'clock arcs
- Cells increase in length by factor $\mathrm{e}^{\sim}=2.718$ - Orbits separate by factor $\mathrm{e}^{2} \sim 7.389$
- In centre, high-energy orbits separated by 2 cm - Use $0.7 \mathrm{~T} / 1.1 \mathrm{~m}$ massless septum, BD, QF $\rightarrow 8 \mathrm{~cm}$

Transverse orbit exaggeration x256

Tunnel Crossover under RHIC Pipe

- eRHIC path length must $\sim=$ RHIC hadron ring - Can't stay on inside or outside all the way around
- Space under 4 and 10 o'clock no-cryo pipe

Adiabtic scheme similar to bypass gives 3.36 m total horizontal displacement

30 m central warm section with 1.81 m displacement

All FFAG Special Sections

Orbit Error Correction is Important

- Even energy spread ${ }^{\sim} 10^{-3}$ in such a long channel can cause phase differences
- Of the order of 1000 cells around RHIC tunnel
- Natural chromaticity + errors \rightarrow emittance growth
- Must correct orbits to within less than beam size

Field Error Sources and Mitigations

Field error source	Relative size	Equivalent displacement	Time scale	Linear / Nonlinear	Mitigation
Material magnetisation	$2 \mathrm{e}-2$	$200 \mu \mathrm{~m}$	Constant	Both	Magnet tuning on bench
Magnet assembly	$2 \mathrm{e}-3$	$20 \mu \mathrm{~m}$	Constant	Both	Magnet tuning on bench
Alignment on girder	$1 \mathrm{e}-2$	$100 \mu \mathrm{~m}$	Constant	Linear	1% (50G) linear corrector coils
Radiation damage	$<1 \mathrm{e}-3$	$<10 \mu \mathrm{~m}$	Years	Unknown	$1 \%(50 \mathrm{G})$ linear corrector coils
Temperature coefficient	$1 \mathrm{e}-3 / \mathrm{K}$	$10 \mu \mathrm{~m} / \mathrm{K}$	Minutes -	Linear (?)	Orbit feedback + corrector coils
Slow vibrations	$<1 \mathrm{e}-3$	$<10 \mu \mathrm{~m}$	< few Hz	Linear	Orbit feedback + corrector coils
Fast vibrations	$<1 \mathrm{e}-5$	$<0.1 \mu \mathrm{~m}$	$>$ few Hz	Linear	Not corrected (small enough)

Permanent Magnet Prototyping

NdFeB Irradiation Test

Test magnets of 5 material grades placed in hottest parts of RHIC tunnel ~500Gy irradiation so far, eRHIC 20 year estimate 1kGy No change in 4 of 5 materials

$\mathrm{C} \beta$ Prototype Facility at Cornell

