eRHIC: an Efficient Multi-Pass ERL based on FFAG Return Arcs

On behalf of the eRHIC design team

eRHIC Schematic

Cost Savings for a ~20GeV ERL EIC

Parameter	Non-FFAG Design	FFAG Design	Reduction
Linac energy per turn	3.33 GeV	1.32 GeV	2.52x
Turns until collision	6	16	(2.67x increase)
Beamline loops built	6	2	3x
Synchrotron power loss for I=20mA	2.18 MW	9.87 MW	4.5x increase

eRHIC is ERL-based to achieve high luminosity

 Electron beam only interacts once so can have an extremely high beam-beam tune shift of ~20

- Would have to be kept stable if in a storage ring

FFAG Cell Orbits

- FFAG1 limited by energy range 4-5x
- FFAG2 optimised for low synchrotron power

* Just one option, there is also a 4+12 turn scheme

FFAG Cells Parameter Tables

Parameter	FFAG1	FFAG2
Energy range	1.334 – 6.622 GeV	7.944 – 21.164 GeV
Energy ratio	4.96×	2.66×
Number of turns	5	11
Cell length	1.795m	3.591m
BD, QF lengths	0.425m, 0.471m	1.272m, 1.809m
Drift lengths	45cm, 45cm	6cm, 45cm
BD, QF gradients	25 T/m, -25 T/m	29.256 T/m, -25 T/m
Maximum orbit span	16.6mm	21.5mm
Tune per cell range	0.033 - 0.408	0.034 - 0.410
TOF variation	31.0ppm (6.6cm/ring)	38.0ppm (8.1cm/ring)
Maximum field on orbit	0.266 T	0.416 T
Synchrotron power loss	0.34MW, I=50mA	9.87MW, I=20mA, 21.2GeV
June 9, 2015	Stephen Brooks, ERL 2015	9.48MW, I=50mA, 15.9GeV 2.79MW. I=50mA. 10.6GeV ⁵

eRHIC Tunes per Cell vs. Energy

eRHIC TOF Variation with Energy

eRHIC Synchrotron Power per Turn

eRHIC FFAG Straight Sections

10m

High energy FFAG

Low energy FFAG

Orbits exaggerated transversely x1000

Quadrupole offsets and curvature adiabatically removed over 17 transition cells.

As dipole component disappears, all orbits move to straight centre line with small errors: ± 0.436 mm in low-energy ring ± 0.066 mm in high-energy ring

...that can be corrected with fine adjustments

1cm

eRHIC FFAG Rings in Perspective

3D Bypass Layout in RHIC Tunnel

Orbits exaggerated transversely x5000

Enough clearance for an R=4.16m (STAR-sized) detector if it is displaced inwards on existing rails by 1.76m. Clearances would be >34cm from beamline centre to walls/detector

Extraction Scheme

- Adiabatically expand cells in 5 & 9 o'clock arcs
- Cells increase in length by factor e ~= 2.718

 Orbits separate by factor e² ~= 7.389
- In centre, high-energy orbits separated by 2cm
 Use 0.7T/1.1m massless septum, BD, QF → 8cm

AAAAAAAAAAAA

Transverse orbit exaggeration x256

Tunnel Crossover under RHIC Pipe

- eRHIC path length must ~= RHIC hadron ring
 Can't stay on inside or outside all the way around
- Space under 4 and 10 o'clock no-cryo pipe

Adiabtic scheme similar to bypass gives 3.36m total horizontal displacement

30m central warm section with 1.81m displacement

Orbit Error Correction is Important

 Even energy spread ~ 10⁻³ in such a long channel can cause phase differences

Of the order of 1000 cells around RHIC tunnel

- Natural chromaticity + errors \rightarrow emittance growth
- Must correct orbits to within less than beam size

Field Error Sources and Mitigations

Field error source	Relative size	Equivalent displacement	Time scale	Linear / Nonlinear	Mitigation
Material magnetisation	2e-2	200µm	Constant	Both	Magnet tuning on bench
Magnet assembly	2e-3	20µm	Constant	Both	Magnet tuning on bench
Alignment on girder	1e-2	100µm	Constant	Linear	1% (50G) linear corrector coils
Radiation damage	<1e-3	<10µm	Years	Unknown	1% (50G) linear corrector coils
Temperature coefficient	1e-3/K	10µm/K	Minutes - hours	Linear (?)	Orbit feedback + corrector coils
Slow vibrations	<1e-3	<10µm	< few Hz	Linear	Orbit feedback + corrector coils
Fast vibrations	<1e-5	<0.1µm	> few Hz	Linear	Not corrected (small enough)

June 9, 2015

Permanent Magnet Prototyping

NdFeB Irradiation Test

Cβ Prototype Facility at Cornell

See other talks at this meeting e.g. Chris Mayes on Wednesday pm Concerns of the second