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1 Definitions

The Singular Value Decomposition (SVD) of a complex matrix is conventionally A = ULV,
where M* denotes MT. Here, U and V are unitary matrices with U~! = U* and ¥ is diagonal
with ¥ = diag[o,]. For real matrices this is just A = UXVT and unitarity is equivalent to
U~! = UT, ie. orthogonality. In fact, V7 is also orthogonal since (VI)™! = (V)71 =V =
(V)T which means the simpler definition A = UV can be used for the rest of this note.

2 Fundamental Problem

In control systems, one often uses a linear or locally-linear model to determine the required
inputs. Suppose an input vector change x € X produces an output reponse Ax € Y that is
meant to achieve some desired change b € Y. The input and output spaces X and Y may
have different dimensionalities and therefore A can be a rectangular matrix. This means that
an exact solution may not be possible, particularly if dimY > dim X. Thus the ‘best’ solution
can be formulated as the minimisation problem of finding arg min |Ax — b|y-.

However, particularly in the case of ill-conditioned matrices, the exact solution may require
unacceptably large control inputs. What is required practically is the best approximation that
can be achieved while x is not too large. This suggests casting the fundamental problem as

arg min |Ax — bly
x| x <r

with 7 > 0 being chosen depending on how large a solution is acceptable. As r — oo, the value
will eventually settle at the exact or optimum solution if one exists.

3 Solution using SVD

The SVD decomposition of A gives

arg min |Ax —bl|y = arg min |[UXVx —b|y.
x| x <r x| x <r

Here, A and ¥ are possibly-rectangular matrices mapping from X to Y, V' is a square orthogonal
matrix mapping X to itself and U is another mapping Y to itself. Note that any orthogonal



T

matrix U preserves the norm as |Ux|? = xTUTUx = xTU'Ux = xTx = |x|? so |Ux| = |x| as

norms are non-negative. In particular,
IxX|x =|Vx|x and |[USVx-—bly =|XVx — U 'bly,
where the second equality has multiplied by the unitary matrix U~'. This means that

arg min |Ax —b|y =arg min |ZVx — U 'bly.
|x|x<r [Vx|x <r

Defining vectors v = Vx and u = U~'b this becomes

arg min |Ax —b|y =V targ min |Sv —uly,
x|x < [v]x<r

where the right-hand arg min is now understood to find the value of v, so the premultiplication
for x = Vv is required. The problem has now been simplified into one with a diagonal matrix
instead of A.

3.1 Exact Minimum Solution

If the unrestricted argmin also satisfies |x|x < 7 then it is the solution. The unrestricted
minimum is a fixed point of the norm expression squared:

o o dimY o dimY
0 = —|Yv—ul=—-—" Sv—u)l=_—— Lo s o — )2
81}”’ v u‘Y vy, ; ( v u)z v, ; ( i<dim X 0iV; Uz)
0
= v (Jnv'fl - u'fl)Q = %(Ugﬂf% — 205 UpUn + u721) = 20721Un — 20pup
n n

& op(opvn —uy) =0.

For each n, this is true if either v, = w,/o, or o, = 0. In the latter case, the ¥ matrix
does not range over the full dimensionality of Y and any value of v, may be chosen because
the minimum is non-unique. It is usually best to choose v, = 0 in all such ambiguous cases,
since this corresponds to the minimum with smallest |v|x = |x|x. There is also the case when
dimY < dim X, where the above equation reduces to 0 = 0 for n > dim Y, giving no constraint
on v, which should be set to zero by the same argument. The exact minimum can be written
explicitly as

_v—=lrr—1 0 0, @y ify#0
x =V [(U "b),/ 0n], where x/y_{() otherwise

3.2 Constrained Minimum

The function |Xv — uly does not have multiple disconnected local minima, so if the exact
minimum with smallest norm found in the previous section still has |x|x > r, the constrained
minimum must have |x|x = r rather than being an interior point. The local gradient found in
the previous section

Vy|Zv —ul} = 2[02v, — opun)

must be a scalar multiple of the position v because otherwise it has some component parallel
to the surface of the radius r hypersphere and the value of the function can be reduced. The



gradient is expected to be negative with increasing r, anti-parallel to v, so for some A > 0,
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For the case where n > dim Y, the gradient of that component is zero as before and 0 = —2\2v,,,

so v, = 0. The constrained minimum can be written explicitly as

O’n(U_lb)n

-1
x=V la%—k)\z

] ,  where weset (U 'b), =0 ifn>dimY.

The norm of x decreases monotonically with A because |x|x = |v|x and every element of v
decreases in magnitude with increasing A. As A — 0 the constrained minimum tends towards
the exact minimum. As A — oo, the constrained minimum tends towards 0 but if renormalised,
the limit has v,, = o,u,, which is —% times the gradient of |[Yv —ul} at v = 0. Thus the large
A limit corresponds to a infinitesimal ‘steepest descent’ step.

The continuity and monotonicity of |x|x = r(\) ensures a value of A can always be found
for any value of r between 0 and the norm of the exact solution point. For example, a bisection
search or root-finding algorithm can determine A for a given r, after first checking the exact
solution point does not have norm less than 7.

3.3 Implementation Note

Using the orthogonal property of U and V, entries (U ~'b),, should be calculated as the much
faster equivalent (U Tb)n and the premultiplication by V! should be implemented as V7. Once
the SVD is calculated, nothing slower than matrix-vector multiplication is required.

4 Units

Elements of the vector spaces X and Y can be physical quantities with units [X] and [Y]
respectively. By definition, A has units [Y]/[X]. In the SVD, the entries of U and V have no
units as they map within the same space, leaving ¥ and its entries o,, with units [Y]/[X]. The
parameter \ in the previous section was defined to also have units [Y]/[X] but r has units [X].

5 Identity with the Levenberg—Marquardt Algorithm

The Levenberg—Marquardt algorithm involves a ‘damped’ least squares step, which for a Jaco-

bian matrix J involves solving
(JTT + AeuD)x = J"b,

where Arpr > 0 is called the damping factor. If the Jacobian is decomposed via SVD as
J = UXV, this becomes
(VISUTUSV + Ay D)x = VISUTD



and noting that UTU = I by orthogonality of U,
VISV + ey Dx = VISU b,
Pre-multipliying both sides by V and using its orthogonality V'V = I gives
(W + A V)x = SUTH
= (22+\uVx = YUD.

This is starting to look vaguely familiar. Inverting the left-hand side to give an expression for x
yields
x = V224 au D) '2UTD
= V24 D) IEU .

Comparing this to the constrained minimum formula with parameter A from a previous section:

an(U_lb)n

-1
x=V [U%—F/\?

and noting that ¥ = diag[o,] reveals that these are the same formulae if Az = A\2.

6 Constrained Maximum of a Quadratic

As the |Xv — u|§/ minimised in the previous sections was a quadratic function of x, it is natural
to wonder if an arbitrary (scalar) quadratic function could be maximised using a similar method:
that is, find

1
arg max f(x) = arg max (f(O) +g-x+ XTHX) .
x| <r |x|<r 2

H is the Hessian matrix of second derivatives, so is symmetric, meaning its SVD decomposition
can be written H = UTXU, with U orthogonal. This permits a change of variable

fx) = f0O)+glx+ %XTUTEUX
= f(0)+g"UT(Ux) + %(UX)TZ(UX)
= arg f}rg'agif(x) = arg |(rjr}1{f‘1;(r (f(O) + (Ug)T (Ux) + ;(UX)TZ(UX)> .

Defining u = Ux and ignoring the constant term, this becomes
1

arg max f(x) = UT arg max ((Ug)Tu + uTEu> .
|x|<r lu|<r 2

The maximised expression is a single sum as 3 is diagonal, so its gradient vector is

Vu <(Ug)Tu + ;uTZu> — (Ug)n + omttn].

6.1 Exact Stationary Point

If none of the o, are zero, f has a stationary point at u = [—(Ug),/0n], which is only a
maximum if all the o, are negative.



6.2 Constrained Maximum

A constrained maximum would have, for some A > 0,
[(Ug)n + onun] = [Auy]
and thus u = [(Ug)n/(A — op)]. The value of A must satisfy

2 w12 42 (Ug)%
= = = 3

The expression on the right has a 400 singularity whenever A = o, for some n. It is also not
monotonic, so there could be many solutions. However, note that A — oo still corresponds to
r — 0, so small r solutions are in the region where A > max,, 0,, = omax.

What does the other end of this region, A — o correspond to? First note that if opax < 0
then the other end is actually A — 0, corresponding to the exact maximum (and it really is a
maximum because all the o, are negative). Otherwise, a vector element u,, with o,, = opax > 0
tends to infinity, meaning the solution is asymptotically running up the steepest parabolic ascent

direction available to it, as expected of a maximum.

Finally, note that although 72 is not a monotonic function of ), it is a (locally) convex one:
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Taking into account the asymptotic behaviour as A\ — oo, this means 72 in the region A > opax
is monotonically decreasing, so a value of A can always be found for any value of r between 0
and the norm of the exact solution point (or infinity if opmax > 0, corresponding to a saddle,
ridge or minimum valley).

6.3 Summary

The locus of constrained maxima is

x(\) =UT [(Ug>”]

A—op

for A > max{0, omax}. If omax < 0 then x(0) is the exact maximum.
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