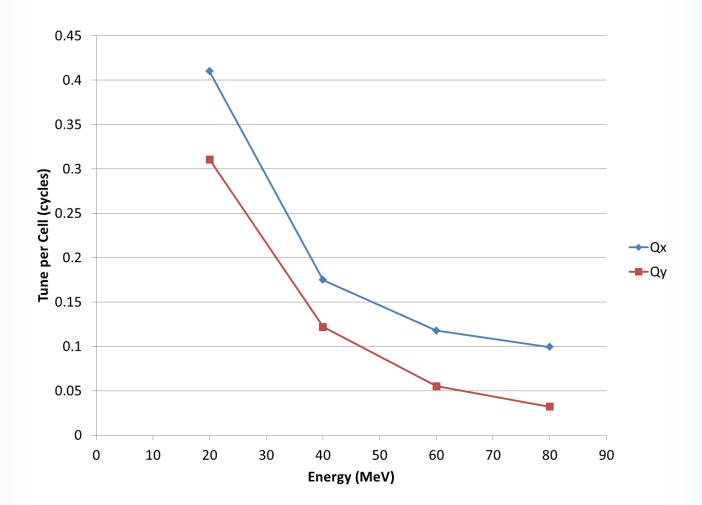
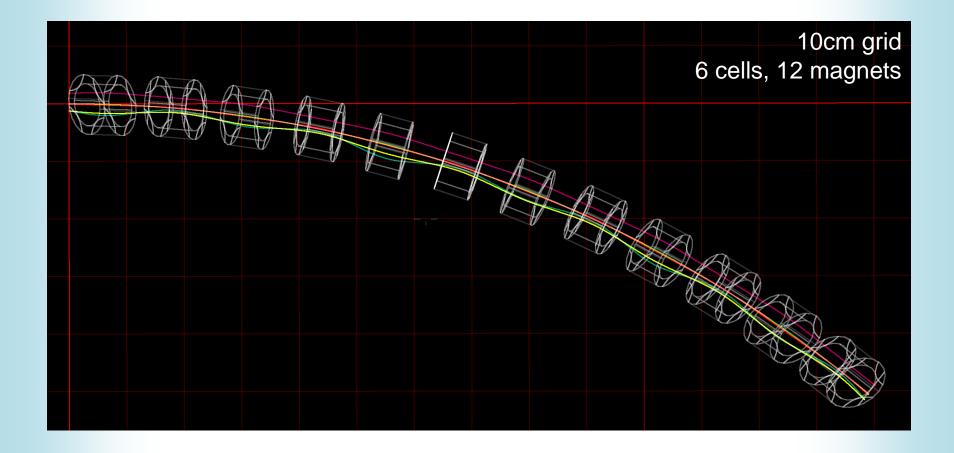

Generalised Halbach Magnets for a Non-Scaling FFAG Arc

Thanks to: George Mahler – engineering John Cintorino, Animesh Jain – magnet measurement


20-80MeV NS-FFAG Beamline

Parameter	Value	Units
Particle species	Electron	
Energy range	20-80	MeV
Cell Length	0.251751	m
Cell Angle	6.666	degrees (54 per turn)
R = avg. radius of curvature	2.16364	m
Max orbit excursion	19.83	mm (from circle radius R)
Tune range per cell	$Q_{y,80} = 0.032, Q_{x,20} = 0.410$	cycles
Cell lattice	halfD2, QF, D1, BD, halfD2	
Drift lengths	D1 = 67.55, D2 = 64.90	mm
Number of cells	6	
Total length	1.51051	m
Total angle	40	degrees


20, 40, 60, 80MeV in NS-FFAG Cell

Tunes

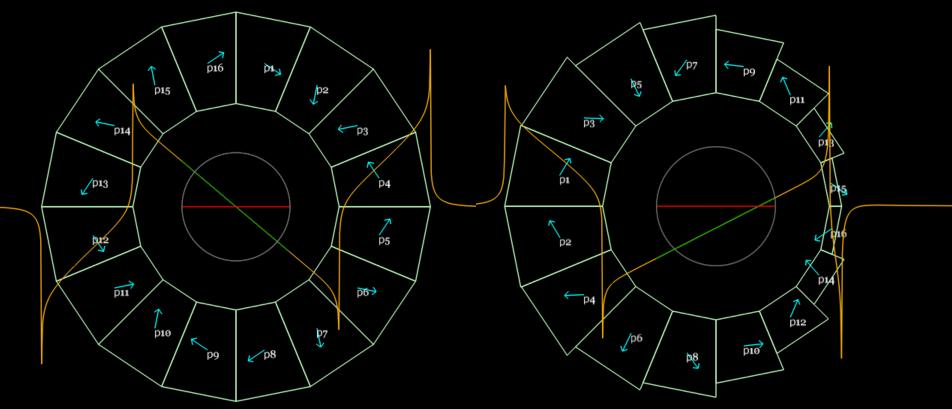
40 degree NS-FFAG Beamline

Why am I making this odd thing?

- I had some spare Halbach magnets from CBETA prototyping that they're not using
- The 20-80MeV BNL ATF energy range matches the energy range of CBETA magnet halves

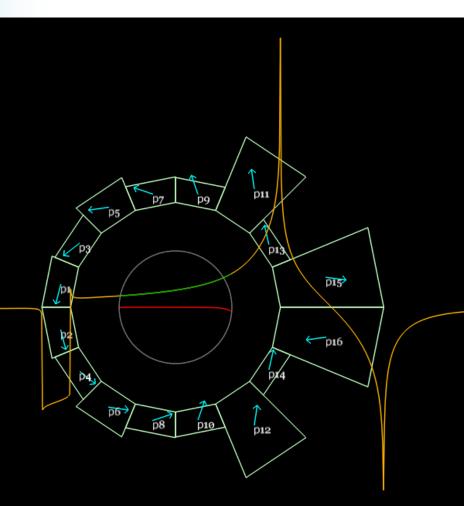
 This is by luck, also George Mahler's idea
- It demonstrates 4x energy range in a nonscaling FFAG for the first time (I think)
 - Very useful for risk-reduction in the eRHIC design, which uses exactly such FFAGs as transfer lines

Two Magnet Ideas


- Generalised Halbach arrangement
 - Vary the size and magnetisation direction of the magnet wedges
 - Can produce "any" field configuration
 - Or an existing field configuration shifted to better reflect the aperture required by the beams
- Permanent magnet shimming with iron wires
 - Reduces field errors from "factory" ~1e-2 level to ~1e-4 level for accelerator magnets, cheaply

Magnet Parameters

Parameter	"QF" magnet	"BD" magnet	Units
Length	57.44	61.86	mm
Dipole B _y (x=0)	0	-0.37679	т
Quadrupole dB _y /dx	-23.624	19.119	T/m
Inner radius (magnet pieces)	37.20	30.70	mm
(shim holder)	34.70	27.60	mm
<pre>"Pole-tip" field (magnet pieces)</pre>	0.879	(-)0.964	т
Max field at r=1cm	0.236	(-)0.568	т
Outer radius (magnet pieces)	62.45	59.43	mm
(tubular support)	76.2	76.2	mm

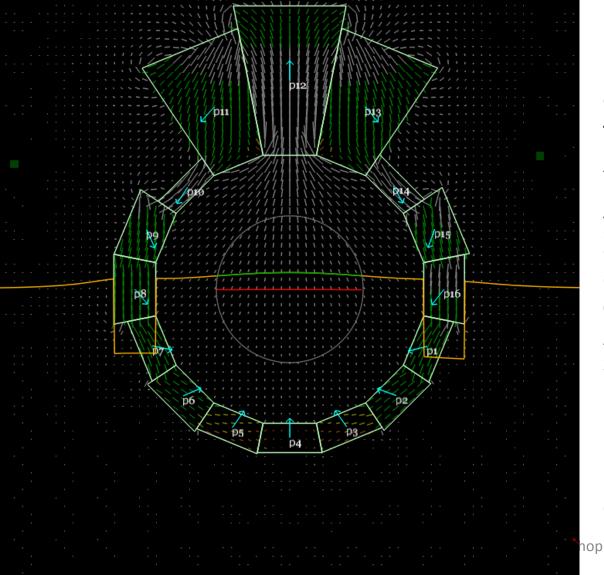

Generalised Halbach design

My current sheet approximation code (PM2D) is good enough

Material grade: N35SH from AllStar Magnetics, B_r(eff.)=1.194T

Scaling FFAG example

 $B_0 = 0.2T$ $R_0 = 5m$ k = 125


"e-fold length" = $R_0/k = 40mm$ Target GFR = 20mm Aperture radius = 36.5mm

x (mm)	В _v (Т)
-36.5	0.0800
-20	0.1212
0	0.2000
20	0.3294
36.5	0.4965

Max field error = 5.4 Gauss RMS field error = 0.9 Gauss

Cross-section area = 45.0cm²

VFFAG example

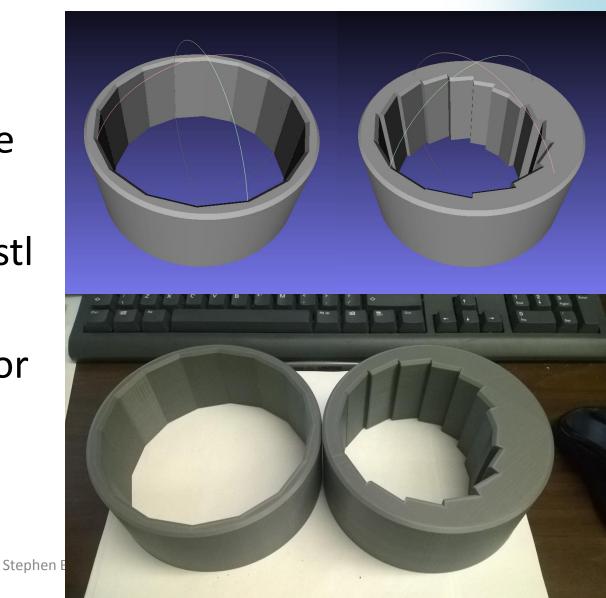
 $B_0 = 0.2T$ k = 25m⁻¹

"e-fold length" = 1/k = 40mm Target GFR = 20mm Aperture radius = 36.5mm

y (mm)	В _v (Т)
-36.5	0.0803
-20	0.1213
0	0.2000
20	0.3297
36.5	0.4981

Max field error = 3.0 Gauss RMS field error = 1.0 Gauss

Cross-section area = 43.1 cm²


Photos of magnets (unshimmed)

3D Printed Magnet Holder

- Field optimiser
- → Magnet wedge dimensions
- → 3D print file (.stl mesh)
- and block spec. for manufacturer



Assembly with Dummy Blocks

Rotating Coil

- Gives multipole field amplitudes at a given radius (R=10mm here)
- Stated as fraction of main multipole (quad here) times 10000 to give "units"
- <0.5 unit accuracy

Even older magnet shown here but brass tube is a rotating coil at BNL

Unshimmed Rotating Coil Results

Halbach type QF magnet #1 PMQ_0501 (2-Jun-2016)

Field harmonics are in "units" of 10^{-4} of the quadrupole field *Reference radius used is 25 mm*

Halbach type BD magnet #2 PMQ_0302 (1-Jun-2016)

Field harmonics are in "units" of 10⁻⁴ of the *quadrupole field* at a reference radius of 10 mm.

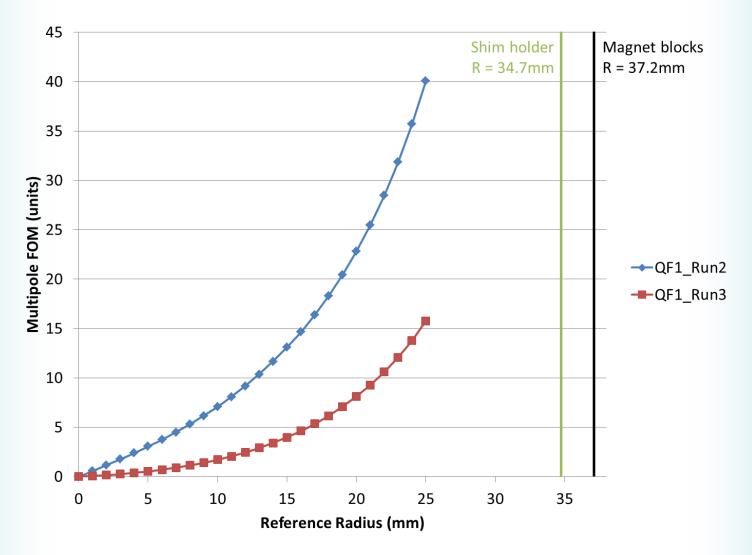
	2-Jun-2016		
Quantity	PMQ_0501 Run 2	Q	
Integrated Gradient (T)	1.3579	Fi	
Normal Dipole		s	
Normal Quadrupole	10000.0	s	
Normal Sextupole	-6.9	s	
Normal Octupole	12.5	s	
Normal Decapole	-1.7	s	
Normal Dodecapole	-2.6	s	
Normal 14-pole	2.1	s	
Normal 16-pole	-5.6	s	
Normal 18-pole	-3.5	s	
Normal 20-pole	0.5	s	
Normal 22-pole	1.0	s	
Normal 24-pole	0.3	s	
Normal 26-pole	0.2	s	
Normal 28-pole	0.0	s	
Normal 30-pole	-0.1	s	

	2-Jun-2016
Quantity	PMQ_0501 Run 2
Field anlge (mr)	
Skew Dipole	
Skew Quadrupole	
Skew Sextupole	12.66
Skew Octupole	21.22
Skew Decapole	-15.00
Skew Dodecapole	19.33
Skew 14-pole	10.01
Skew 16-pole	-2.51
Skew 18-pole	4.07
Skew 20-pole	1.12
Skew 22-pole	2.05
Skew 24-pole	-0.95
Skew 26-pole	0.43
Skew 28-pole	0.29
Skew 30-pole	-0.10

	1-Jun-2016	1-Jun-2016		1-Jun-2016
Quantity	PMQ_0302 Run 2	PMQ_0303 Run 1	Quantity	PMQ_0302 Run 2
Integrated Gradient (T)	-1.1825	-1.1806	Integ. Dipole (T.m)	0.023299
Normal Dipole	19704.4	19704.3	Skew Dipole	0.00
Normal Quadrupole	-10000.0	-10000.0	Skew Quadrupole	0.00
Normal Sextupole	14.8	17.5	Skew Sextupole	6.32
Normal Octupole	11.2	5.6	Skew Octupole	-9 . 95
Normal Decapole	0.5	-0.6	Skew Decapole	3.43
Normal Dodecapole	-1.6	0.0	Skew Dodecapole	-0.02
Normal 14-pole	0.1	-0.1	Skew 14-pole	0.16
Normal 16-pole	0.0	0.0	Skew 16-pole	0.03
Normal 18-pole	0.0	0.0	Skew 18-pole	-0.02
Normal 20-pole	0.0	0.0	Skew 20-pole	0.01
Normal 22-pole	0.0	0.0	Skew 22-pole	0.00
Normal 24-pole	0.0	0.0	Skew 24-pole	0.00
Normal 26-pole	0.0	0.0	Skew 26-pole	0.00
Normal 28-pole	0.0	0.0	Skew 28-pole	0.00
Normal 30-pole	0.0	0.0	Skew 30-pole	0.00

1-Jun-2016 PMQ_0303

Run 1 0.023264 -0.040.04 6.60 -11.26 1.38 0.00 -0.23 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00

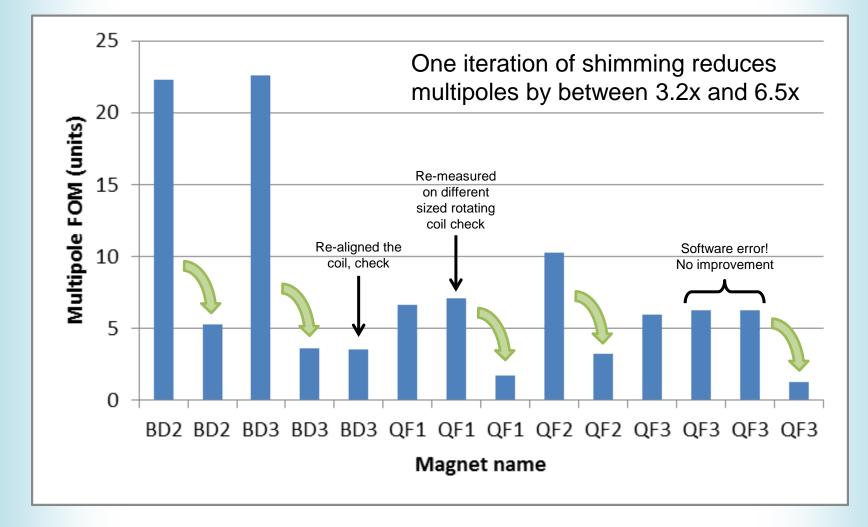

Higher Harmonic Figure of Merit

 Quadrature sum of units (normal and skew) from sextupole up (10000 units = main quad)

$$\sqrt{\sum_{n=3}^{15} a_n^2 + b_n^2}$$

- Depends on reference radius
 - Small radius: sextupole is dominant
 - Large radius: higher order pole contributions increase rapidly

Figure of Merit vs. Radius


Iron Wire Shimming Theory

- Cylinder acquires the surface currents of a cos(θ) dipole, giving uniform B and M inside and an external dipole outside
- Optimise masses/radii of 32 iron wires placed inside magnet bore to cancel measured errors

3D Printed Shim Holder

Shimming Results (one iteration)

Best so far: QF3

Table 1: Field harmonics from ERHIC-PMQ_0503_0004_001 at R=10mm. The nominal magnet length is 57.4412mm and the average field corresponds to 23.6386 T/m.

Field harmonic	Normal units	Skew units	
Dipole	0.00	-0.00	
Quadrupole	10000.00	0.00	
Sextupole	-0.18	-0.94	
Octupole	0.34	0.17	
Decapole	-0.65	0.09	
Dodecapole	-0.05	0.02	
14-pole	-0.02	-0.01	
16-pole	-0.00	0.00	
18-pole	0.00	0.00	
20-pole	-0.00	-0.00	
22-pole	-0.00	-0.00	
24-pole	-0.00	0.00	
26-pole	0.00	-0.00	
28-pole	0.00	-0.00	
30-pole	-0.00	-0.00	

2nd shimming iteration

eRHIC Permanent Magnet Quadrupole PMQ_005A (26-Apr-2016)

Field harmonics are in "units" of 10^{-4} of the quadrupole field at a reference radius of 10 mm.

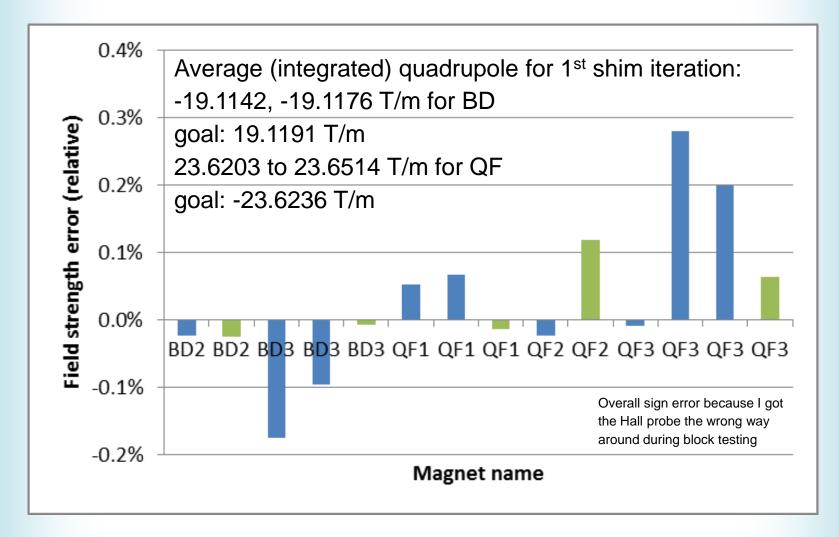
	15-Dec-2015	18-Apr-2016	26-Apr-2016	
Quantity	PMQ_005A* Run 6(†)	PMQ_005A* Run 10(††)	PMQ_005A* Run 11(†††)	Quantity
Integrated Gradient (T)	1.6483	1.6513	1.6509	Field Ang
Normal Dipole				Skew Dip
Normal Quadrupole	10000.00	10000.00	10000.00	Skew Qua
Normal Sextupole	-18.67	-4.37	0.26	Skew Sex
Normal Octupole	5.34	-1.19	-1.53	Skew Oct
Normal Decapole	-0.88	0.35	-0.72	Skew Dec
Normal Dodecapole	-1.04	-0.80	0.09	Skew Doo
Normal 14-pole	1.16	0.18	0.03	Skew 14-
Normal 16-pole	-1.46	-0.25	0.03	Skew 16-
Normal 18-pole	0.12	0.04	0.00	Skew 18-
Normal 20-pole	0.45	0.20	0.03	Skew 20-
Normal 22-pole	-0.01	0.02	0.06	Skew 22-
Normal 24-pole	0.03	0.01	0.01	Skew 24-
Normal 26-pole	0.00	-0.01	-0.03	Skew 26-
Normal 28-pole	-0.12	-0.10	-0.10	Skew 28-
Normal 30-pole	0.00	0.00	0.01	Skew 30-
Field quality figure of merit	29.62	6.69	1.94	

	15-Dec-2015	18-Apr-2016	26-Apr-2016
Quantity	PMQ_005A* Run 6(†)	PMQ_005A* Run 10(††)	PMQ_005A* Run 11(†††)
Field Angle (mr)			
Skew Dipole			
Skew Quadrupole			
Skew Sextupole	-5.69	-0.50	0.51
Skew Octupole	-21.09	-4.69	0.47
Skew Decapole	-4.11	-1.01	-0.38
Skew Dodecapole	0.29	0.03	0.41
Skew 14-pole	-0.09	0.05	-0.12
Skew 16-pole	-0.31	0.04	0.03
Skew 18-pole	-0.03	-0.07	0.05
Skew 20-pole	0.23	0.04	0.04
Skew 22-pole	0.00	0.03	0.01
Skew 24-pole	-0.01	-0.02	0.02
Skew 26-pole	0.00	0.00	0.00
Skew 28-pole	0.00	-0.01	-0.02
Skew 30-pole	0.00	0.00	0.01

Of a previous test quadrupole magnet "5A"

3D printer was worse so had to use clamps for position accuracy!

* PMQ_005A is magnet built from magnets taken from PMQ_0005 and installed in a modified holder to reduce 12-pole


(†) Run 6 is measurement repeated with no iron shims, after several iterations of measurements with iron shims.

^(††) Run 10 is iteration #1 with all wires pushed radially outward using thin wedges.

^(†††) Run 11 is iteration #2 with all wires pushed radially outward using thin wedges.

1 iter \rightarrow 4.4x, 2 iters \rightarrow 15.3x

Field Strength vs. Spec

Cost and Labour per Magnet

- Permanent magnet wedges (AllStar N35SH)
 - \$1052.67 per QF magnet (16 wedges)
 - \$758.00 per BD magnet (16 wedges)
- Labour ~8h per magnet: 3h measurement, 2h shimming, 2h assembly, 1h 3D printer setup
- Required infrastructure
 - 3D printer (\$2-3k), used Ultimaker 2 Extended+
 - Rotating coil (~\$50k)

Limitations

- Strength
 - Upper limit to quad*aperture (pole tip field)
 - Watch out for demagnetisation from reverse fluxes (OK so far up to ~1T pole tip)
 - Choosing a high H_{ci} grade increases resistance to this
- Can't have rapidly varying field w.r.t. aperture
- Temperature coefficient of NdFeB ~-0.12%/K
- Choose high H_{cj} grade for radiation resistance

Benefits

No power consumption

No power supply, no copper wires or windings

- Any field shape you like within strength limits
- No "cross-talk" between iron surfaces in compact lattices
- Can be assembled with mallet
- 1e-4 accuracy is possible after shimming
- Seems cheap, at least for short magnet length

