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1 Definitions

A single particle has a 6-element phase space vector s = (x,yv) where yv = % is proportional
to the relativistic momentum.

The ellipsoid is represented by a 21-element vector (s,C,V) where s is the phase space
location of the centroid. C' is the 3 x 3 covariance matrix defined by Cj; = (dz;0z;), where 6x
is the distance of a particle from the centroid x. C'is symmetric so only counts as 6 elements of
the overall vector. V is a general 3 x 3 matrix that determines the velocity distribution in the
bunch by 0(yv) = Véx. In total this makes 6 + 6 + 9 = 21 elements.
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The ellipsoid is uniformly filled with total charge () and has zero temperature, so occupies
only three dimensions of the six dimensional phase space. It can be seen as the image of the
unit ball {u: |u| < 1} under the mapping u +— s + (Xu, VXu), where X is some 3 x 3 matrix
that maps the unit ball to an ellipsoid with covariance matrix C'. The two are related by

C = (6x0xT) = (Xuu? XT) = X (uu) X7 = X%IXT = %XXT,

where the fact (uu’) = %I is related to the RMS of a coordinate in a unit ball being %

2 Time Derivative of s

The time derivative of position is x = v = %'yv, so a way to calculate £ from v is needed.

Relativistic formulae give |yv|? = (37)%c? = (72 — 1)c?, so ¢ + |yv|? = (y¢)? and therefore
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The time derivative of yv is determined by the Lorentz force law F = q(E + v x B) in the
fields E(x,t) and B(x, ). Note that (yv) = 2 = £ 50 (yv) = L(E + %'yv x B).
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3 Time Derivative of C

Differentiating a previous formula, C = %(X XT 4 XX T, the second term being the transpose
of the first. To evaluate X, remember that dx = Xu and §(yv) = VX u and use the phase space
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since the time derivative of the phase space position is defined entirely in terms of the phase
space position. The Jacobian matrix is defined as (%).. = % so that g—;ég ~ 0f for small
ij

displacements. For this case, g—i = 0 as x only depends on yv. The vector u may be considered

a constant that ‘labels’ the particle, so 6% = Xu and

Xu= 87XVXU
I(rv)
for any u, so X = %VX. This gives C' = %ag’i) VXXT + transpose = %VC’ + transpose.

4 Time Derivative of V

Take the other part of the phase space flow

o) = 2 g+ G o),

substituting in the matrix definitions (and removing u) gives

d(yv) X4 A(yv)
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VX.

Subtracting VX both sides and postmultiplying by X ! gives
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Using the formula for X from the previous section,
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5 Derivatives of Phase Space Flow

The term 8&’;) would be equal to I in a non-relativistic setting, so it encodes relativistic kine-
matics.
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The term % contains contributions from the field gradients:
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The term ggzg comes from the magnetic force’s dependence on the velocity x = %fyv:

-4 (= N
D) - matw) BT m <C273 (yv)yvi + 7e1> x B.

6 Electrostatic Repulsion

A derivation using elliptic coordinates [1, 2] gives the interior potential of an axis-aligned uni-
formly charged ellipsoid as
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where a,b, ¢ are the radii in z,y,z and p = Q/V = Q/(%Wabc) is the charge density. This
integral must be done numerically. The corresponding electric field is

E;=— = mwabcp 3 dv
dz; 0o a; Tvy/(a®+v)(2 +v)(c2 +v)
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where a; is the radius in the x; axis. This field varies linearly with x and gives a gradient matrix
g—g that is constant and diagonal. For non-axis-aligned ellipsoids, the principal axes must be
found (for example by SVD of C) and the field rotated. The rotated electric field will remain
linear and the gradient matrix will remain constant but not diagonal. This self electric field can
be added onto any external field and gradients being applied.

6.1 Moving Reference Frame

The above derivation assumes that the charges are stationary for all time and thus does not
generate a B field. For moving bunches this is not valid and a much better approximation is to
assume the charges are stationary in the average rest frame of the bunch (this is still not entirely
accurate if the bunch changes shape or accelerates).

Define B = v/c, = |v|/c and the 3 x 3 spatial part of the Lorentz transformation matrix

A:I+7ﬂ_21ﬁﬂT.

The covariance matrix in the bunch’s rest frame is Cpunen = ACA. This may be used in the
method in the previous section to give %. The transformation of Ey,,« back to the
laboratory frame also generates a B field:

1
E = vEpunch — (’7 - 1)E1|lunch’ B = E'YB X Ebunch,

where Elllunch = M is the electric field parallel to the bunch velocity. Finally, the spatial

derivatives can be transformed back to the laboratory frame with
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7 Numerical Time Integration

Now that all the time derivatives of the variables (s,C,V’) have been defined, any numerical
integration method such as 4" order Runge-Kutta may be used on the 21-element vector.

This model is called “first order transport” because it is first order in space. The change in
shape of the ellipsoid is represented by linear transformations (matrices) and no higher-order
distortions are taken into account.

References

[1] Potential Field of a Uniformly Charged FEllipsoid, Wei Cai (Department of Mechanical En-
gineering, Stanford University), May 28, 2007.

[2] Foundations of Potential Theory, O. D. Kellogg, (Dover, New York, 1953).



