
First Order Transport of a Cold Uniform Ellipsoid of Charge

Stephen Brooks

October 24, 2025

1 Definitions

A single particle has a 6-element phase space vector s = (x, γv) where γv = p
m is proportional

to the relativistic momentum.

The ellipsoid is represented by a 21-element vector (s, C, V ) where s is the phase space
location of the centroid. C is the 3 × 3 covariance matrix defined by Cij = ⟨δxiδxj⟩, where δx
is the distance of a particle from the centroid x. C is symmetric so only counts as 6 elements of
the overall vector. V is a general 3 × 3 matrix that determines the velocity distribution in the
bunch by δ(γv) = V δx. In total this makes 6 + 6 + 9 = 21 elements.

The ellipsoid is uniformly filled with total charge Q and has zero temperature, so occupies
only three dimensions of the six dimensional phase space. It can be seen as the image of the
unit ball {u : |u| ≤ 1} under the mapping u 7→ s+ (Xu, V Xu), where X is some 3× 3 matrix
that maps the unit ball to an ellipsoid with covariance matrix C. The two are related by

C = ⟨δxδxT ⟩ = ⟨XuuTXT ⟩ = X⟨uuT ⟩XT = X
1

5
IXT =

1

5
XXT ,

where the fact ⟨uuT ⟩ = 1
5I is related to the RMS of a coordinate in a unit ball being 1√

5
.

2 Time Derivative of s

The time derivative of position is ẋ = v = 1
γγv, so a way to calculate 1

γ from γv is needed.

Relativistic formulae give |γv|2 = (βγ)2c2 = (γ2 − 1)c2, so c2 + |γv|2 = (γc)2 and therefore
1
γ = c√

c2+|γv|2
.

The time derivative of γv is determined by the Lorentz force law F = q(E + v ×B) in the
fields E(x, t) and B(x, t). Note that ˙(γv) = ṗ

m = F
m , so ˙(γv) = q

m(E+ 1
γγv ×B).
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3 Time Derivative of C

Differentiating a previous formula, Ċ = 1
5(ẊXT +XẊT ), the second term being the transpose

of the first. To evaluate Ẋ, remember that δx = Xu and δ(γv) = V Xu and use the phase space
flow

δẋ =
∂ẋ

∂x
δx+

∂ẋ

∂(γv)
δ(γv),

since the time derivative of the phase space position is defined entirely in terms of the phase

space position. The Jacobian matrix is defined as
(

∂f
∂g

)
ij

= ∂fi
∂gj

so that ∂f
∂gδg ≃ δf for small

displacements. For this case, ∂ẋ
∂x = 0 as ẋ only depends on γv. The vector u may be considered

a constant that ‘labels’ the particle, so δẋ = Ẋu and

Ẋu =
∂ẋ

∂(γv)
V Xu

for any u, so Ẋ = ∂ẋ
∂(γv)V X. This gives Ċ = 1

5
∂ẋ

∂(γv)V XXT + transpose = ∂ẋ
∂(γv)V C + transpose.

4 Time Derivative of V

Take the other part of the phase space flow

δ ˙(γv) =
∂ ˙(γv)

∂x
δx+

∂ ˙(γv)

∂(γv)
δ(γv),

substituting in the matrix definitions (and removing u) gives

V̇ X + V Ẋ =
∂ ˙(γv)

∂x
X +

∂ ˙(γv)

∂(γv)
V X.

Subtracting V Ẋ both sides and postmultiplying by X−1 gives

V̇ =
∂ ˙(γv)

∂x
+

∂ ˙(γv)

∂(γv)
V − V ẊX−1.

Using the formula for Ẋ from the previous section,

V̇ =
∂ ˙(γv)

∂x
+

∂ ˙(γv)

∂(γv)
V − V

∂ẋ

∂(γv)
V.

5 Derivatives of Phase Space Flow

The term ∂ẋ
∂(γv) would be equal to I in a non-relativistic setting, so it encodes relativistic kine-

matics.
∂ẋ

∂(γv)
=

−1

c2γ3
(γv)(γv)T +

1

γ
I.

The term ∂ ˙(γv)
∂x contains contributions from the field gradients:

∂ ˙(γv)

∂xi
=

q

m

(
∂E

∂xi
+

1

γ
γv × ∂B

∂xi

)
.
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The term ∂ ˙(γv)
∂(γv) comes from the magnetic force’s dependence on the velocity ẋ = 1

γγv:

∂ ˙(γv)

∂(γvi)
=

q

m

∂ẋ

∂(γvi)
×B =

q

m

(
−1

c2γ3
(γv)γvi +

1

γ
ei

)
×B.

6 Electrostatic Repulsion

A derivation using elliptic coordinates [1, 2] gives the interior potential of an axis-aligned uni-
formly charged ellipsoid as

U(x) = πabcρ

∫ ∞

0

(
1− x2

a2 + v
− y2

b2 + v
− z2

c2 + v

)
1√

(a2 + v)(b2 + v)(c2 + v)
dv,

where a, b, c are the radii in x, y, z and ρ = Q/V = Q/(43πabc) is the charge density. This
integral must be done numerically. The corresponding electric field is

Ei = −dU

dxi
= πabcρ

∫ ∞

0

2xi
a2i + v

1√
(a2 + v)(b2 + v)(c2 + v)

dv

=
3

2
Q

(∫ ∞

0

1

(a2i + v)
√
(a2 + v)(b2 + v)(c2 + v)

dv

)
xi,

where ai is the radius in the xi axis. This field varies linearly with x and gives a gradient matrix
∂E
∂x that is constant and diagonal. For non-axis-aligned ellipsoids, the principal axes must be
found (for example by SVD of C) and the field rotated. The rotated electric field will remain
linear and the gradient matrix will remain constant but not diagonal. This self electric field can
be added onto any external field and gradients being applied.

6.1 Moving Reference Frame

The above derivation assumes that the charges are stationary for all time and thus does not
generate a B field. For moving bunches this is not valid and a much better approximation is to
assume the charges are stationary in the average rest frame of the bunch (this is still not entirely
accurate if the bunch changes shape or accelerates).

Define β = v/c, β = |v|/c and the 3× 3 spatial part of the Lorentz transformation matrix

Λ = I +
γ − 1

β2
ββT .

The covariance matrix in the bunch’s rest frame is Cbunch = ΛCΛ. This may be used in the
method in the previous section to give ∂Ebunch

∂xbunch
. The transformation of Ebunch back to the

laboratory frame also generates a B field:

E = γEbunch − (γ − 1)E
∥
bunch, B =

1

c
γβ ×Ebunch,

where E
∥
bunch = (Ebunch·β)β

β2 is the electric field parallel to the bunch velocity. Finally, the spatial
derivatives can be transformed back to the laboratory frame with

∂E

∂x
=

∂E

∂xbunch
Λ,

∂B

∂x
=

∂B

∂xbunch
Λ.
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7 Numerical Time Integration

Now that all the time derivatives of the variables (s, C, V ) have been defined, any numerical
integration method such as 4th order Runge–Kutta may be used on the 21-element vector.

This model is called “first order transport” because it is first order in space. The change in
shape of the ellipsoid is represented by linear transformations (matrices) and no higher-order
distortions are taken into account.
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