# Scaling VFFAG eRHIC Design

**Progress Report 3** 

### Last time:

- Found FODO lattices capable of 8 and 10GeV
  - 8GeV lattice very robust
    - Orbit excursion of 3cm without errors seemed possible
  - 10GeV lattice exhibited resonance behaviour
- Running long dynamic aperture scans of FODO stability for 60% and 80% packing factor

# I. FODO Parameter Space & 9.4/9.5GeV Lattices

# FODO lattice, 60% packing factor



# FODO lattice, 80% packing factor



### Loss performance with scaling k



# 9.4GeV/60% pack FODO lattice



Species: Electrons Injection energy (MeV): 1200 Extraction energy (MeV): 9400 Lattice: FODO Magnet B0 (T): 0.0766 Magnet k (m^-1): 30 Magnet tau: 0 Magnet fringe length (m): 0.067 F Magnet length (m): 1.78 D Magnet length (m): 1.114 Drift length (m): 0.965 Injected normalised emittance (m.rad): 19.36381158822e-6 Injected beta u (m): 9.36 Injected beta v (m): 3 Injected alpha u: 3.706 Injected alpha v: -2.316 Injected distribution: ExpTails Designed for tracking in: S

Cell length = 4.824 m Orbit excursion = 0.0686006 m Bending radius = 378.66 m Packing factor = 0.59992 Circumference factor = 4.34535 Emax\_eRHIC = 9.47752 GeV

# 9.5GeV/80% pack FODO lattice



Species: Electrons Injection energy (MeV): 1200 Extraction energy (MeV): 9500 Lattice: FODO Magnet B0 (T): 0.0652 Magnet k (m^-1): 30 Magnet tau: 0 Magnet fringe length (m): 0.067 F Magnet length (m): 2.328 D Magnet length (m): 1.543 Drift length (m): 0.484 Injected normalised emittance (m.rad): 19.36381158822e-6 Injected beta u (m): 8.76 Injected beta v (m): 2.86 Injected alpha u: 4.001 Injected alpha v: -2.312 Injected distribution: ExpTails Designed for tracking in: S

Cell length = 4.839 m Orbit excursion = 0.0689533 m Bending radius = 378.603 m Packing factor = 0.79996 Circumference factor = 4.93121 Emax\_eRHIC = 9.55964 GeV

#### Tunes

| Lattice   | Qu (deg) | Qv (deg) | Qu    | Qv    |
|-----------|----------|----------|-------|-------|
| FDF2(10)  | 82.7     | 255.5    | 0.230 | 0.710 |
| FODO(8)   | 64.3     | 133.6    | 0.179 | 0.371 |
| FODO(10)  | 41.1     | 158.5    | 0.114 | 0.440 |
| FODO(9.4) | 39.1     | 139.9    | 0.109 | 0.389 |
| FODO(9.5) | 43.4     | 137.6    | 0.120 | 0.382 |

# II. Synchrotron Radiation Power

# SR in arcs for 50mA, sum all turns

| Top Energy (GeV) | Turns | Linac (GeV) | FODO 9.4GeV/60% | FODO 9.5GeV/80% |
|------------------|-------|-------------|-----------------|-----------------|
| 10               | 9     | 1.1         | 13.64 (MW)      | 13.17 (MW)      |
| 10               | 8     | 1.2375      | 12.18           | 11.77           |
| 10               | 7     | 1.4143      | 10.74           | 10.38           |
| 10               | 6     | 1.65        | 9.31            | 9.00            |
| 9.5              | 9     | 1.0444      | 11.11           | 10.74           |
| 9.5              | 8     | 1.175       | 9.93            | 9.59            |
| 9.5              | 7     | 1.3429      | 8.75            | 8.46            |
| 9.5              | 6     | 1.5667      | 7.59            | 7.33            |
| 9                | 9     | 0.9889      | 8.96            | 8.65            |
| 9                | 8     | 1.1125      | 8.00            | 7.73            |
| 9                | 7     | 1.2714      | 7.06            | 6.82            |
| 9                | 6     | 1.4833      | 6.12            | 5.91            |

### **III. Arc Magnets Specification**

# Use FODO 9.5GeV/80% lattice

By=B0 e^ky (and Bx=0) for x=0

- k=30m^-1, B0=0.0652T (field at 1.2GeV)

- By=0.5160T, y=68.95mm at 9.5GeV
- By=0.7604T, y=81.88mm at 14GeV
  Use for high energy, reduced current operation
- Good field region x: -3 to 3mm, y: -3 to 83mm
- F, D magnet lengths: 2.328m, 1.543m
- 61.418m radius of curvature (B0\_D = -B0\_F)

### IV. Future Work

# Next steps (roughly in this order)

- Redo simulations with weighted particles in tails (down to 1e-6 and beyond)
- Error (misalignment) study
  - Include logs of emittance growth, centroid offset
- Develop "straight" cell for full ring lattice
- Open issue concerning emittance growth from synchrotron photon emission
- "End-to-end" tracking of full ring