Splitter Magnet in Muon1

(Very slight update on Feb $3^{\text {rd's }}$ s slides)

Main Source of Δ (Path Length)

- $\Delta \mathrm{L}=2$ (hypot. - adjacent)
- Hypot. $=\mathrm{X} / \sin \theta$
- Adjacent $=X / \tan \theta$
 $-=X \cos \theta / \sin \theta$
- So $\Delta \mathrm{L}=2 \mathrm{X}(1-\cos \theta) / \sin \theta$ $-=2 X\left(\theta / 2+\theta^{3} / 24+\theta^{5} / 240+\ldots\right.$...) [Wolfram Alpha]
- Thus $\Delta \mathrm{L}=\mathrm{X} \theta+\mathrm{X} \theta^{3} / 12+\mathrm{X} \theta^{5} / 120+\ldots$
- I focus on reducing θ, Nick reduced X

2 m 0.92T dipole from Tsoupas design Horizontal and vertical to scale

1334MeV

2 m 0.92 T dipole with $-5 \mathrm{~T} / \mathrm{m}$ gradient Higher energies move into lower (and even negative) field region

1334MeV 2656MeV

21164 MeV

Exit Angle as Function of Energy

Dipoles Placed for $\mathrm{X}=0.3,0.4 \ldots 1 . .1 \mathrm{~m}$

2 m dipoles with $0.344 \ldots 0.866 \mathrm{~T}$ are sufficient
Furthest is centred 22.8 m downstream from dipole exit
Need to be bent not rectangular, and narrow since high-energy lines only separated by ~2cm

Δ (Path Length) vs. Energy (C.Fn.)

Regular Design (1:1 scale)

$\mathrm{Z}=0$
10 m
20m

Regular Design (X exaggerated)

Reducing X for Lowest Energy

Reordered Design (1:1 scale)

Z=0
10 m
20m

Reordered Design (X exaggerated)

