Rough Power Estimates for Fully Electromagnetic Quadrupoles

Amp-Turns Required in Quad Coil

- Ampere's law: $\oint \mathbf{H} \cdot d\mathbf{s} = I$
- $\mathbf{H} = \mathbf{B}/\mu$ - If $\mu \approx \infty$ in iron then $\mathbf{H} \approx \mathbf{0}$ there

 $\Gamma \Omega V$

•
$$\mathbf{B} = \mu_0 \mathbf{H} = \begin{bmatrix} g \\ g \\ x \end{bmatrix}$$
 in quad aperture
• $\mu_0 I = \int_0^R \mathbf{B} \cdot d\mathbf{s} = \int_0^R g \frac{1}{\sqrt{2}} \begin{bmatrix} r \\ r \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} dr = \int_0^R g r dr = \frac{1}{2} g R^2$

Amp-Turns Required in Quad Coil

Ring	g = Gradient (T/m)	R = Pole radius (m)	/ (Amp.Turns)
FFAG2	49.515	0.017	5693.702
FFAG1	9.5 (averaged)	0.044088 (scaled)	7347.216

- Pole radius calculated by
 - FFAG2: measuring from Wuzheng's diagram
 - FFAG1: scaling by orbit r_{max} from magnetic centre
- FFAG1 gradients actually differ by ~10% between F and D magnets but not significant

Power/Resistivity Calculation

- $P = \rho V j^2$
- $P/L = \rho A j^2$
- j = I/A
- $P/L = \rho I^2/A$
- Let $A = s^2/2$
- $P/L = 2\rho I^2/s^2$
- As there are 8 coils, $P_{ring} = 16L_{magnets}\rho I^2/s^2$ - $L_{magnets} = 2985.821m$ for full eRHIC hexagon

Power/Resistivity Calculation

Ring	<i>s</i> = Coil side (m)	Coil material	Resistivity (Ω.m)	P/L (W/m)	Ring Power (MW)
FFAG2	0.10	Copper	1.68×10^{-8}	108.9253	2.602
FFAG1	0.15	Copper	1.68×10^{-8}	80.6125	1.926
Total				189.5378	4.527
FFAG2	0.10	Aluminium	2.82 × 10 ⁻⁸	182.8389	4.367
FFAG1	0.15	Aluminium	2.82 × 10 ⁻⁸	135.3138	3.232
Total				318.1528	7.600
FFAG2	0.15	Aluminium	2.82 × 10 ⁻⁸	81.26174	1.941
FFAG1	0.20	Aluminium	2.82 × 10 ⁻⁸	76.11403	1.818
Total				157.3758	3.759

• Comparison: at least 12MW is going into the RF for synchrotron radiation loss compensation

Conductor Cost Calculation

Ring	Material	Volume (m ³)	Mass (kg)	Price (\$/kg)	Cost (M\$)
FFAG2	Copper	119.4328	1070118	6.981	7.470
FFAG1	Copper	268.7239	2407766	6.981	16.809
Total	(s=10,15cm)	388.1567	3477 884		24.279
FFAG2	Aluminium	119.4328	322468.6	1.866	0.602
FFAG1	Aluminium	268.7239	725554.5	1.866	1.354
Total	(s=10,15cm)	388.1567	1048 023		1.956
FFAG2	Aluminium	268.7239	725554.5	1.866	1.354
FFAG1	Aluminium	477.7313	1289875	1.866	2.407
Total	(s=15,20cm)	746.4552	2015 429		3.761

• Aluminium benefits doubly since ρ_{AI} = 2700 kg/m³ but ρ_{Cu} = 8960 kg/m³

Conclusions

- Our current design uses 1.812MW just for the correctors (due to small area)
 - And almost as many channels since we would replace 3 correctors by 4 coil trims
 - Could have series bus and low-power trims separately
- The larger Al design doubles this to 3.759MW and materials cost is very small
 - Only possible issue: magnets are now ~50cm across for each ring