"2:1" Scaled eRHIC FFAG Design

Featuring $\leq 30 \mathrm{~T} / \mathrm{m}$ quadrupoles

FFAG2 Orbits Too Close Together?

- Magnet vertically at least 8 mm away from orbits that are within 9.1 mm of quad centre
- Difficult to produce field "at a distance"
- Vladimir mentioned close-together orbits aren't very good for extraction
- Low beta function also not good
- High gradient (small orbit range) increases sensitivity to alignment errors

Optics-Preserving FFAG Cell Scaling

- Multiply element lengths by factor A
- And beta functions
- Multiply orbit excursion by A^{2}
- Divide gradients by A 2
- Keep dipole field the same
- Equivalently, multiply quad offsets by A ${ }^{2}$
- Tunes per cell stay the same
- Synchrotron radiation per turn stays the same

2:1 Cell and Girder Stacking

- Make FFAG1 have a shorter cell (closer orbits) and FFAG2 a longer cell (lower gradient)
- Tried making the FFAG2 cell twice the length of the FFAG1 cell (roughly as shown below)
- Enables two-beamline repeating module if needed
- Free parameter: choice of FFAG1 cell length

Parameter Scaling (simplified)

Parameter	FFAG1	FFAG2
Old gradient (T/m)	9.986	49.515
Old orbit range (mm)	31.3	12.5
Old angle per cell (rad)	0.006757	0.006757
Cell length scaling	$\mathbf{0 . 6 4 5 7 8 8}$	1.291577
Angle per cell (rad)	0.004363	0.008727
Cells per 60deg	240	120
Orbit range scaling	0.417043	1.66817
Gradient (T/m)	23.9448	29.68222
Orbit range (mm)	13.05343	20.85213
Old packing factor	0.774627	
Corrected packing factor	0.651011	0.825506
Corrected gradient (T/m)	28.4915	27.85281

What Has Not Been Done

- Tracking study in this presentation didn't correct drift lengths back to 30 cm , just scaled
- Might get improvement in radiation for FFAG2
- Overall scale of cells can still be varied
- Maybe use magnet design to find optimum
- High gradients run into problems but low gradients also ought to require increasing amounts of material at some point, so there should be an optimum

Current Lattice (Jan'14)

Parameter	Low-Energy FFAG	High-Energy FFAG	
Energy range	$1.334-6.622 \mathrm{GeV}$	$7.944-21.164 \mathrm{GeV}$	
Energy ratio	4.96 x	2.66 x	
Turns (1.322GeV linac)	5	11	
Synchrotron power	0.26 MW @ 50 mA	$9.8 \mathrm{MW} @ 21.1 \mathrm{GeV}, 18 \mathrm{~mA}$ $10.2 \mathrm{MW} @ 15.8 \mathrm{GeV}, 50 \mathrm{~mA}$ $3.2 \mathrm{MW} @ 10.5 \mathrm{GeV}, 50 \mathrm{~mA}$	
		$22.4 \mathrm{ppm}(5 \mathrm{~cm})$	
TOF range	$54.7 \mathrm{ppm}(12 \mathrm{~cm})$	28.8 cm	
Drift space	28.8 cm	$0.035-0.369$	
Tune range	$0.036-0.424$	$12.6 \mathrm{~mm}\left(r_{\text {max }}=9.1 \mathrm{~mm}\right)$	
Orbit range (quads)	$31.3 \mathrm{~mm}\left(r_{\text {max }}=23.6 \mathrm{~mm}\right)$	0.451 T	
Max \|B	on orbit	0.227 T	$49.515 \mathrm{~T} / \mathrm{m}$
Max quad strength	$9.986 \mathrm{~T} / \mathrm{m}$		

Scaled and 2:1 Stacked Lattice

Parameter	Low-Energy FFAG	High-Energy FFAG	
Energy range	$1.334-6.622 \mathrm{GeV}$	$7.944-21.164 \mathrm{GeV}$	
Energy ratio	$4.96 \times$	$2.66 \times$	
Turns (1.322GeV linac)	5	11	
Synchrotron power	$0.25 \mathrm{MW} @ 50 \mathrm{~mA}$	9.8 MW @ $21.1 \mathrm{GeV}, 18 \mathrm{~mA}$ $10.3 \mathrm{MW} @ 15.8 \mathrm{GeV}, 50 \mathrm{~mA}$ $3.2 \mathrm{MW} @ 10.5 \mathrm{GeV}, 50 \mathrm{~mA}$	
		$37.4 \mathrm{ppm}(8 \mathrm{~cm})$	
TOF range	$22.9 \mathrm{ppm}(5 \mathrm{~cm})$	37.2 cm	
Drift space	18.6 cm	$0.035-0.369$	
Tune range	$0.036-0.420$	$21.0 \mathrm{~mm}\left(r_{\text {max }}=15.2 \mathrm{~mm}\right)$	
Orbit range (quads)	$13.1 \mathrm{~mm}\left(r_{\max }=9.9 \mathrm{~mm}\right)$	0.451 T	
Max \|B	on orbit	0.224 T	$29.682 \mathrm{~T} / \mathrm{m}$
Max quad strength	$23.945 \mathrm{~T} / \mathrm{m}$		

Jan'14 Orbits Exaggerated 100x

2:1 Orbits Exaggerated 100x

(2 cells of low-energy FFAG)

Jan'14 Lattice Description

Element	Length (m)	Angle (mrad)	Gradient $(\mathrm{T} / \mathrm{m})$	Offset (mm)
All Drifts	0.287643623	0		
BD1 (Low)	$0.90805=353 / 4^{\prime \prime}$	3.057567	9.986	-6.946947
QF1 (Low)	$1.09855=431 / 4^{\prime \prime}$	3.699017	-9.006	6.946947
BD2 (High)	0.90805	3.057567	49.515	-3.901098
QF2 (High)	1.09855	3.699017	-49.515	3.901098

- Cell: $1 / 2 \mathrm{D}, \mathrm{BD}, \mathrm{D}, \mathrm{QF}, 1 / 2 \mathrm{D}$ (length $\approx 2.582 \mathrm{~m}$)
- Cells stack exactly, allowing common girder
- Specification on eRHIC Wiki
- http://www.cadops.bnl.gov/eRHIC/erhicWiki/index.php/FFAG Design:Electrons:Lattice:Arcs

2:1 Lattice Description

Element	Length (m)	Angle (mrad)	Gradient (T/m)	Offset (mm)
Drift D1 (Low)	0.185756896	0		
Drift D2 (High)	0.371513793	0		
BD1 (Low)	0.586408097	1.974541	23.945	-2.897173
QF1 (Low)	0.709430775	2.388782	-21.595	2.897173
BD2 (High)	1.172816195	3.949082	29.682	-6.507696
QF2 (High)	1.418861550	4.777564	-29.682	6.507696

- Cell: ½D,BD,D,QF,1⁄2D
- One FFAG2 cell (length $\approx 3.335 \mathrm{~m}$) stacks on top of two FFAG1 (length $\approx 1.667 \mathrm{~m}$) cells

Jan'14 Tunes

2:1 Tunes

Jan'14 Betas at Matching Plane

2:1 Betas at Matching Plane

Jan'14 Time of Flight Variation

2:1 Time of Flight Variation

2:1 Time of Flight Variation

Jan'14 SR Loss for Each Turn

2:1 SR Loss for Each Turn

Adiabatic Matching, Ring Closure

Cells in...	Jan'14	2:1 FFAG1	2:1 FFAG2
Arc	138	212	106
Transition	17	28	14
Straight	76	116	58
Ring $(6,10,5)$	1378	2132	1066
Both rings	2756		3198 (+16\%)

- The numbers of cells above keep the ring in the tunnel and provide adequate matching

One Arc Cell of FFAG2 Two of FFAG1

Transition to Straight Tunnel

Detector Bypass (PHENIX)

Whole Ring Tracking (FFAG1)

Whole Ring Tracking (FFAG2)

inetic energy 30GeV

Kir
-30 GeV
-20 GeV
-18 GeV
-16 GeV
14 GeV
-12 GeV
10 GeV
0

"Late'14" eRHIC Lattice: Process

- Need to agree on cell length/gradient choice - Make sure it satisfies all our criteria
- Benchmark and implement in 2-3+ codes
- Optimise transitions, bypasses for new cells
- Critical feature: ensure new ring can be placed without hitting RHIC
- Blue ring survey data file will help
- Publish to eRHIC Wiki

Future Improvements

- Can be included in further monthly iterations:
- Correct circumference relative to RHIC blue ring
- Requires all splitters, transfer lines and bypasses
- Splitter design in 3D, trackable, joins with FFAGs
- Requires Muon1 magnet field model for long bent dipoles, already underway
- Extraction design (trackable)
- Don't do all this in one version or it'll never happen (also be sure of lattice cells first)

