Correction Methods for Permanent Magnets

Based on Nick Tsoupas's modified Halbach quadrupole for eRHIC

First Magnet Prototype (x5 built)

First Magnet Prototype (x5 built)

- One of 3 options in the eRHIC magnet LDRD
 Others were Wuzheng/iron poles and rectilinear
- Design by Nick Tsoupas, open midplane ±8mm
- Assembled by George Mahler with 3D printer
- Material SmCo N26HS provided by Shin-Etsu
 - Unfortunately blocks adjacent to the open midplanes had wrong magnetisation direction
 - But this was a known error so can be simulated
 - Produces primarily 12-pole

Stephen's PM2D Code

- Assumes fixed M vector in each block (1.07T here)
 - Equivalent surface currents
 - Biot-Savart law
- Assumes µ=1
 Actually ~1.05

Rotating Coil Measurement in Building 902 Annex by Animesh Jain

Normal Poles at r=1cm

Normal Poles at r=1cm (Zoom)

Skew Poles at r=1cm

Quad Strengths (for 6cm length)

PM2D Suggests Displacements

- Nulls 12-pole and 20-pole in theory
- $\Delta x = -3.607 mm$
- ∆y = 2.147mm
- New magnet holder 3D printed
- Magnet 4 blocks
 reused → "004A"

Magnet PMQ_004A

Normal Poles at r=1cm

Normal Poles at r=1cm (Zoom)

Error Magnitude on X-axis

Relative Error on X-axis

Construction/Magnetisation Errors

- As measured in the radiation test, magnetisation varies at 1e-2 level per block
- Also 3D printing construction errors
- Can feed the measured error poles back into PM2D and ask it to displace blocks to cancel
 - This requires both X and Y displacements
 - Radial-only doesn't kill both normal and skew
 - Typically requires up to 0.3mm displacements

Towards Fine Correction Demo

- We were going to add screws and correct fine errors
 - Turns out forces on blocks are not simply repelling
- Now investigating the use of iron wires
 - Easier?

Iron Wires Design Work in Progress

Wires act like dipole sources with strength equal to local ambient field Various thickness wires up to ~1mm diameter needed, about 6 per quadrant Initial results in PM2D are promising

